版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,點,,,,都在上,且的度數(shù)為,則等于()A. B. C. D.2.如圖,AB是⊙O的直徑,OC是⊙O的半徑,點D是半圓AB上一動點(不與A、B重合),連結DC交直徑AB與點E,若∠AOC=60°,則∠AED的范圍為()A.0°<∠AED<180° B.30°<∠AED<120°C.60°<∠AED<120° D.60°<∠AED<150°3.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結i論:①abc>1;②b2﹣4ac>1;③2a+b=1;④a﹣b+c<1.其中正確的結論有()A.1個 B.2個 C.3個 D.4個4.已知函數(shù)是反比例函數(shù),則此反比例函數(shù)的圖象在()A.第一、三象限 B.第二、四象限C.第一、四象限 D.第二、三象限5.若反比例函數(shù)y=的圖象經(jīng)過點(2,﹣6),則k的值為()A.﹣12 B.12 C.﹣3 D.36.在如圖所示的象棋盤(各個小正方形的邊長均相等)中,根據(jù)“馬走日”的規(guī)則,“馬”應落在下列哪個位置處,能使“馬”、“車”、“炮”所在位置的格點構成的三角形與“帥”、“相”,“兵”所在位置的格點構成的三角形相似()A.①處 B.②處 C.③處 D.④處7.如圖在正方形網(wǎng)格中,小正方形的邊長均為1,三角形的頂點都在格點上,則與△ABC相似的三角形所在的網(wǎng)格圖形是()A. B. C. D.8.如圖是由4個大小相同的立方塊搭成的幾何體,這個幾何體的主視圖是()A. B. C. D.9.如圖,在平面直角坐標系中,半徑為2的圓P的圓心P的坐標為(﹣3,0),將圓P沿x軸的正方向平移,使得圓P與y軸相切,則平移的距離為()A.1 B.3 C.5 D.1或510.如圖,在Rt△ABC中,∠BAC=90°.將Rt△ABC繞點C按逆時針方向旋轉48°得到Rt△A′B′C,點A在邊B′C上,則∠B′的大小為()A.42° B.48°C.52° D.58°二、填空題(每小題3分,共24分)11.拋物線y=x2+2x與y軸的交點坐標是_____.12.如圖,正方形ABCD的邊長為,E,F(xiàn)分別是AB,BC的中點,AF與DE,DB分別交于點M,N,則△DMN的面積=.13.如圖是一個三角形點陣,從上向下數(shù)有無數(shù)多行,其中第一行有2個點,第二行有4個點……第n行有2n個點……,若前n行的點數(shù)和為930,則n是________.14.若△ABC∽△DEF,,且相似比為1:2,則△ABC與△DEF面積比_____________.15.若、是方程的兩個實數(shù)根,且x1+x2=1-x1x2,則的值為________.16.如圖,點G是△ABC的重心,過點G作GE//BC,交AC于點E,連結GC.若△ABC的面積為1,則△GEC的面積為____________.17.一張矩形的紙片ABCD中,AB=10,AD=8.按如圖方式折,使A點剛好落在CD上。則折痕(陰影部分)面積為_________________.18.如圖,△ABC中,已知∠C=90°,∠B=55°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=_____三、解答題(共66分)19.(10分)如圖,拋物線y=-x2+bx+c與x軸交于點A(-1,0),與y軸交于點B(0,2),直線y=x-1與y軸交于點C,與x軸交于點D,點P是線段CD上方的拋物線上一動點,過點P作PF垂直x軸于點F,交直線CD于點E,(1)求拋物線的解析式;(2)設點P的橫坐標為m,當線段PE的長取最大值時,解答以下問題.①求此時m的值.②設Q是平面直角坐標系內(nèi)一點,是否存在以P、Q、C、D為頂點的平行四邊形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.20.(6分)在二次函數(shù)的學習中,教材有如下內(nèi)容:小聰和小明通過例題的學習,體會到利用函數(shù)圖象可以求出方程的近似解.于是他們嘗試利用圖象法探究方程的近似解,做法如下:請你選擇小聰或小明的做法,求出方程的近似解(精確到0.1).21.(6分)已知:AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使AB=AC,連結AC,過點D作DE⊥AC,垂足為E.(1)求證:DC=BD(2)求證:DE為⊙O的切線22.(8分)已知:如圖,∠ABC,射線BC上一點D,求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內(nèi)部,且點P到∠ABC兩邊的距離相等.(不寫作法,保留作圖痕跡)23.(8分)計算:.24.(8分)如圖,在△ABC中,AB=BC,D是AC中點,BE平分∠ABD交AC于點E,點O是AB上一點,⊙O過B、E兩點,交BD于點G,交AB于點F.(1)判斷直線AC與⊙O的位置關系,并說明理由;(2)當BD=6,AB=10時,求⊙O的半徑.25.(10分)已知:如圖,在菱形ABCD中,E為BC邊上一點,∠AED=∠B.(1)求證:△ABE∽△DEA;(2)若AB=4,求AE?DE的值.26.(10分)甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.(1)求從袋中隨機摸出一球,標號是1的概率;(2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】連接AB、DE,先求得∠ABE=∠ADE=25°,根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠ABE+∠EBC+∠ADC=180°,即可求得∠CBE+∠ADC=155°.【詳解】解:如圖所示連接AB、DE,則∠ABE=∠ADE∵=50°∴∠ABE=∠ADE=25°∵點,,,都在上∴∠ADC+∠ABC=180°∴∠ABE+∠EBC+∠ADC=180°∴∠EBC+∠ADC=180°-∠ABE=180°-25°=155°故選:D.【點睛】本題主要考查的是圓周角定理和圓內(nèi)接四邊形的性質(zhì),作出輔助線構建內(nèi)接四邊形是解題的關鍵.2、D【分析】連接BD,根據(jù)圓周角定理得出∠ADC=30°,∠ADB=90°,再根據(jù)三角形的外角性質(zhì)可得到結論.【詳解】如圖,連接BD,由∵∠AOC=60°,∴∠ADC=30°,∴∠DEB>30°∴∠AED<150°,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠EDB=90°-30°=60°,∴∠AED>60°∴60°<∠AED<150°,故選D【點睛】本題考查了圓周角定理和三角形的外角性質(zhì).正確應用圓周角定理找出∠ADC=30°,∠ADB=90°是解題的關鍵.3、C【分析】首先根據(jù)開口方向確定a的取值范圍,根據(jù)對稱軸的位置確定b的取值范圍,根據(jù)拋物線與y軸的交點確定c的取值范圍,根據(jù)拋物線與x軸是否有交點確定b2﹣4ac的取值范圍,根據(jù)x=﹣1函數(shù)值可以判斷.【詳解】解:拋物線開口向下,,對稱軸,,拋物線與軸的交點在軸的上方,,,故①錯誤;拋物線與軸有兩個交點,,故②正確;對稱軸,,,故③正確;根據(jù)圖象可知,當時,,故④正確;故選:.【點睛】此題主要考查圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的范圍求與的關系,以及二次函數(shù)與方程之間的轉換,根的判別式的熟練運用是解題關鍵.4、A【分析】首先根據(jù)反比例函數(shù)的定義,即可得出,進而得出反比例函數(shù)解析式,然后根據(jù)其性質(zhì),即可判定其所在的象限.【詳解】根據(jù)已知條件,得即∴函數(shù)解析式為∴此反比例函數(shù)的圖象在第一、三象限故答案為A.【點睛】此題主要考查反比例函數(shù)的性質(zhì),熟練掌握,即可解題.5、A【解析】試題分析:∵反比例函數(shù)的圖象經(jīng)過點(2,﹣6),∴,解得k=﹣1.故選A.考點:反比例函數(shù)圖象上點的坐標特征.6、B【分析】確定“帥”、“相”、“兵”所在位置的格點構成的三角形的三邊的長,然后利用相似三角形的對應邊的比相等確定第三個頂點的位置即可.【詳解】帥”、“相”、“兵”所在位置的格點構成的三角形的三邊的長分別為;“車”、“炮”之間的距離為1,“炮”②之間的距離為,“車”②之間的距離為2,∵∴馬應該落在②的位置,故選B【點睛】本題考查了相似三角形的知識,解題的關鍵是利用勾股定理求得三角形的各邊的長,難度不大.7、C【分析】可利用正方形的邊把對應的線段表示出來,利用一角相等且夾邊對應成比例兩個三角形相似,根據(jù)各個選項條件篩選即可.【詳解】解:根據(jù)勾股定理,AC=,BC=,AB=所以,,,,則+=所以,利用勾股定理逆定理得△ABC是直角三角形
所以,=A.不存在直角,所以不與△ABC相似;B.兩直角邊比(較長的直角邊:較短的直角邊)=≠2,所以不與△ABC相似;C.選項中圖形是直角三角形,且兩直角邊比(較長的直角邊:較短的直角邊)=2,故C中圖形與所給圖形的三角形相似.D.不存在直角,所以不與△ABC相似.
故選:C.【點睛】此題考查了勾股定理在直角三角形中的運用,及判定三角形相似的方法,本題中根據(jù)勾股定理計算三角形的三邊長是解題的關鍵.8、A【分析】主視圖:從物體正面觀察所得到的圖形,由此觀察即可得出答案.【詳解】從物體正面觀察可得,左邊第一列有2個小正方體,第二列有1個小正方體.故答案為A.【點睛】本題考查三視圖的知識,主視圖是從物體的正面看得到的視圖.9、D【分析】分圓P在y軸的左側與y軸相切、圓P在y軸的右側與y軸相切兩種情況,根據(jù)切線的判定定理解答.【詳解】當圓P在y軸的左側與y軸相切時,平移的距離為3-2=1,當圓P在y軸的右側與y軸相切時,平移的距離為3+2=5,故選D.【點睛】本題考查的是切線的判定、坐標與圖形的變化-平移問題,掌握切線的判定定理是解題的關鍵,解答時,注意分情況討論思想的應用.10、A【解析】試題分析:∵在Rt△ABC中,∠BAC=90°,將Rt△ABC繞點C按逆時針方向旋轉48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故選A.考點:旋轉的性質(zhì).二、填空題(每小題3分,共24分)11、(0,0)【解析】令x=0求出y的值,然后寫出即可.【詳解】令x=0,則y=0,所以,拋物線與y軸的交點坐標為(0,0).故答案為(0,0).【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,熟練掌握拋物線與坐標軸的交點的求解方法是解題的關鍵.12、1.【分析】首先連接DF,由四邊形ABCD是正方形,可得△BFN∽△DAN,又由E,F(xiàn)分別是AB,BC的中點,可得=2,△ADE≌△BAF(SAS),然后根據(jù)相似三角形的性質(zhì)與勾股定理,可求得AN,MN的長,即可得MN:AF的值,再利用同高三角形的面積關系,求得△DMN的面積.【詳解】連接DF,
∵四邊形ABCD是正方形,
∴AD∥BC,AD=BC=,
∴△BFN∽△DAN,
∴,
∵F是BC的中點,
∴,
∴AN=2NF,
∴,
在Rt△ABF中,
∴,
∵E,F(xiàn)分別是AB,BC的中點,AD=AB=BC,
∴,
∵∠DAE=∠ABF=90°,
在△ADE與△BAF中,
,
∴△ADE≌△BAF(SAS),
∴∠AED=∠AFB,
∴∠AME=110°-∠BAF-∠AED=110°-∠BAF-∠AFB=90°.
∴,
∴,
∴.
又,
∴.
故答案為:1.13、1【分析】根據(jù)題意得出這個點陣中前n行的點數(shù)和等于2+4+6+8+……+2n,再計算即可.【詳解】解:根據(jù)題意知,2+4+6+8+……+2n
=2(1+2+3+…+n)
=2×n(n+1)
=n(n+1).∴,解得:(負值已舍去);故答案為:1.【點睛】此題考查圖形的變化規(guī)律,結合圖形,找出數(shù)字的運算規(guī)律,利用規(guī)律解決問題.14、1:1【分析】由題意直接根據(jù)相似三角形面積的比等于相似比的平方進行求值即可.【詳解】解:∵△ABC∽△DEF,且△ABC與△DEF的相似比為1:2,∴△ABC與△DEF的面積比為1:1,故答案為:1:1.【點睛】本題考查的是相似三角形的性質(zhì),熟練掌握相似三角形面積的比等于相似比的平方是解題的關鍵.15、1【詳解】若x1,x2是方程x2-2mx+m2-m-1=0的兩個實數(shù)根;∴x1+x2=2m;x1·x2=m2?m?1,∵x1+x2=1-x1x2,∴2m=1-(m2?m?1),解得:m1=-2,m2=1.又∵一元二次方程有實數(shù)根時,△,∴,解得m≥-1,∴m=1.故答案為1.【點睛】(1)若方程的兩根是,則,這一關系叫做一元二次方程根與系數(shù)的關系;(2)使用一元二次方程根與系數(shù)關系解題的前提條件是方程要有實數(shù)根,即各項系數(shù)的取值必須滿足根的判別式△=.16、【分析】如圖,延長AG交BC于D,利用相似三角形的面積比等于相似比的平方解決問題即可.【詳解】解:連接AG并延長交BC于點D,∴D為BC中點∴又∵∴∵G為重心∴∴∴,又∵∴.【點睛】本題考查三角形的重心,三角形的面積,相似三角形的判定和性質(zhì)等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.17、25【分析】根據(jù)折疊利用方程求出AE的長即可【詳解】設,則∵折疊∴∴∴∴DF=4∴解得∴故答案為25【點睛】本題考查了折疊與勾股定理,利用折疊再結合勾股定理計算是解題關鍵。18、70°或120°【分析】①當點B落在AB邊上時,根據(jù)DB=DB1,即可解決問題,②當點B落在AC上時,在RT△DCB2中,根據(jù)∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【詳解】①當點B落在AB邊上時,∵,∴,∴,②當點B落在AC上時,在中,∵∠C=90°,,∴,∴,故答案為70°或120°.【點睛】本題考查的知識點是旋轉的性質(zhì),解題關鍵是考慮多種情況,進行分類討論.三、解答題(共66分)19、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D為頂點的四邊形是平行四邊形,點Q的坐標為【分析】(1)由題意利用待定系數(shù)法,即可求出拋物線的解析式;(1)①由題意分別用含m的代數(shù)式表示出點P,E的縱坐標,再用含m的代數(shù)式表示出PE的長,運用函數(shù)的思想即可求出其最大值;②根據(jù)題意對以P、Q、C、D為頂點的四邊形是平行四邊形分三種情況進行討論與分析求解.【詳解】解:(1)將A(﹣1,0),B(0,1)代入y=﹣x1+bx+c,得:,解得:b=1,c=1∴拋物線的解析式為y=﹣x1+x+1.(1)①∵直線y=x-1與y軸交于點C,與x軸交于點D,∴點C的坐標為(0,-1),點D的坐標為(1,0),∴0<m<1.∵點P的橫坐標為m,∴點P的坐標為(m,﹣m1+m+1),點E的坐標為(m,m+3),∴PE=﹣m1+m+1﹣(m+3)=﹣m1+m+3=﹣(m﹣)1+.∵﹣1<0,0<<1,∴當m=時,PE最長.②由①可知,點P的坐標為(,).以P、Q、C、D為頂點的四邊形是平行四邊形分三種情況(如圖所示):①以PD為對角線,點Q的坐標為;②以PC為對角線,點Q的坐標為;③以CD為對角線,點Q的坐標為.綜上所述:在(1)的情況下,存在以P、Q、C、D為頂點的四邊形是平行四邊形,點Q的坐標為.【點睛】本題考查二次函數(shù)圖像的綜合問題,解題關鍵是熟練掌握待定系數(shù)法求解析式、函數(shù)的思想求最大值以及平行四邊形的性質(zhì)及平移規(guī)律等知識.20、(1)詳見解析,,,.(2)詳見解析,,,.【分析】分別按照小聰和小明的作法列表,描點,連線畫出圖象然后找近似值即可.【詳解】解法:選擇小聰?shù)淖鞣ǎ斜聿⒆鞒龊瘮?shù)的圖象:…-1012………根據(jù)函數(shù)圖象,得近似解為,,.解法2:選擇小明的作法,列表并作出函數(shù)和的圖象:…-10123…………-2-112………根據(jù)函數(shù)圖象,得近似解為,,.【點睛】本題主要考查根據(jù)函數(shù)圖象求方程的近似解,能夠畫出函數(shù)圖象是解題的關鍵.21、(1)證明見解析;(2)證明見解析.【分析】(1)連接AD,根據(jù)中垂線定理不難求得AB=AC;(2)要證DE為⊙O的切線,只要證明∠ODE=90°即可.【詳解】(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,又∵AB=AC,∴DC=BD;(2)連接半徑OD,∵OA=OB,CD=BD,∴OD∥AC,∴∠ODE=∠CED,又∵DE⊥AC,∴∠CED=90°,∴∠ODE=90°,即OD⊥DE,∴DE是⊙O的切線.考點:切線的判定.22、見解析.【分析】根據(jù)角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)即可解決問題.【詳解】∵點P在∠ABC的平分線上,∴點P到∠ABC兩邊的距離相等(角平分線上的點到角的兩邊距離相等),∵點P在線段BD的垂直平分線上,∴PB=PD(線段的垂直平分線上的點到線段的兩個端點的距離相等),如圖所示:【點睛】本題考查作圖﹣復雜作圖、角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題.23、2【分析】首先計算各銳角三角函數(shù)值,然后進行計算即可.【詳解】原式=2-1+1【點睛】此題主要考查銳角三角函數(shù)的相關計算,牢記銳角三角函數(shù)值是解題關鍵.24、(1)(1)AC與⊙O相切,證明見解析;(2)⊙O半徑是.【解析】試題分析:(1)連結OE,如圖,由BE平分∠ABD得到∠OBE=∠DBO,加上∠OBE=∠OEB,則∠OBE=∠DBO,于是可判斷OE∥BD,再利用等腰三角形的性質(zhì)得到BD⊥AC,所以OE⊥AC,于是根據(jù)切線的判定定理可得AC與⊙O相切;(2)設⊙O半徑為r,則AO=10﹣r,證明△AOE∽△ABD,利用相似比得到,然后解方程求出r即可.試題解析:(1)AC與⊙O相切.理由如下:連結OE,如圖,∵BE平分∠ABD,∴∠OBE=∠DBO,∵OE=OB,∴∠OBE=∠OEB,∴∠OBE=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度常州二手房過戶稅費減免與流程簡化服務協(xié)議3篇
- 2025年度科技園區(qū)場地租賃合作協(xié)議書6篇
- 2024年度食品行業(yè)知識產(chǎn)權保護與保密協(xié)議3篇
- 2025年度智能床墊定制與采購協(xié)議合同模板下載3篇
- 上海二手房交易標準協(xié)議示例版A版
- 專家資質(zhì)聘用合作合同(2024年度版)版B版
- 專業(yè)搬遷服務協(xié)議:倉儲搬遷及物流服務協(xié)議版B版
- 企業(yè)培訓之人際關系培訓
- 職業(yè)學院申訴受理登記表
- 福建省南平市武夷山第三中學2020年高三數(shù)學理上學期期末試卷含解析
- STEP7v5.6安裝與授權說明-s75.6秘匙安裝
- 粉體工程第六章粉碎過程及設備
- 洪水計算(推理公式法)
- NS2000變電站綜合自動化系統(tǒng)輔助裝置技術使用說明書(2006-5-25)
- ap系列火焰光度計說明書
- GMW系列往復式給料機說明書
- 集裝箱碼頭堆場項目可行性研究報告寫作范文
- 食堂成本核算方案
- 醫(yī)保藥店一體化信息管理系統(tǒng)操作手冊
- 一般塑膠產(chǎn)品成品生產(chǎn)工藝流程圖
- 2016年河南省對口升學文秘類基礎課試題卷
評論
0/150
提交評論