版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個(gè)圓錐的底面和一個(gè)半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個(gè)圓錐軸截面底角的大小是()A. B. C. D.2.命題:的否定為A. B.C. D.3.已知為等比數(shù)列,,,則()A.9 B.-9 C. D.4.設(shè)是定義域?yàn)榈呐己瘮?shù),且在單調(diào)遞增,,則()A. B.C. D.5.已知,是兩條不重合的直線,,是兩個(gè)不重合的平面,則下列命題中錯(cuò)誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則6.已知向量,(其中為實(shí)數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.8.在精準(zhǔn)扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個(gè)扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種9.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位10.已知不同直線、與不同平面、,且,,則下列說(shuō)法中正確的是()A.若,則 B.若,則C.若,則 D.若,則11.函數(shù)的部分圖象如圖所示,則的單調(diào)遞增區(qū)間為()A. B.C. D.12.設(shè)等差數(shù)列的前n項(xiàng)和為,若,則()A. B. C.7 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的兩條漸近線方程為,若頂點(diǎn)到漸近線的距離為1,則雙曲線方程為.14.已知平面向量、的夾角為,且,則的最大值是_____.15.已知數(shù)列的前項(xiàng)和為,,則滿足的正整數(shù)的值為______.16.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(1)求直線的極坐標(biāo)方程;(2)若直線與曲線交于,兩點(diǎn),求的面積.18.(12分)已知函數(shù).(1)若,求的取值范圍;(2)若,對(duì),不等式恒成立,求的取值范圍.19.(12分)已知函數(shù),其中.(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè).若在上恒成立,求實(shí)數(shù)的最大值.20.(12分)已知函數(shù).(1)求不等式的解集;(2)若對(duì)任意恒成立,求的取值范圍.21.(12分)設(shè)為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在橢圓:上,該橢圓的左頂點(diǎn)到直線的距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓外一點(diǎn)滿足,平行于軸,,動(dòng)點(diǎn)在直線上,滿足.設(shè)過(guò)點(diǎn)且垂直的直線,試問(wèn)直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)寫出該定點(diǎn),若不過(guò)定點(diǎn)請(qǐng)說(shuō)明理由.22.(10分)過(guò)點(diǎn)作傾斜角為的直線與曲線(為參數(shù))相交于M、N兩點(diǎn).(1)寫出曲線C的一般方程;(2)求的最小值.
2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【答案解析】
設(shè)圓錐的母線長(zhǎng)為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【題目詳解】設(shè)圓錐的母線長(zhǎng)為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【答案點(diǎn)睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.2.C【答案解析】
命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.3.C【答案解析】
根據(jù)等比數(shù)列的下標(biāo)和性質(zhì)可求出,便可得出等比數(shù)列的公比,再根據(jù)等比數(shù)列的性質(zhì)即可求出.【題目詳解】∵,∴,又,可解得或設(shè)等比數(shù)列的公比為,則當(dāng)時(shí),,∴;當(dāng)時(shí),,∴.故選:C.【答案點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.4.C【答案解析】
根據(jù)偶函數(shù)的性質(zhì),比較即可.【題目詳解】解:顯然,所以是定義域?yàn)榈呐己瘮?shù),且在單調(diào)遞增,所以故選:C【答案點(diǎn)睛】本題考查對(duì)數(shù)的運(yùn)算及偶函數(shù)的性質(zhì),是基礎(chǔ)題.5.D【答案解析】
根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【題目詳解】選項(xiàng)A:若,,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項(xiàng)B:若,,,由線面平行的判定定理,有,故B正確;選項(xiàng)C:若,,,故,所成的二面角為,則,故C正確;選項(xiàng)D,若,,有可能,故D不正確.故選:D【答案點(diǎn)睛】本題考查了空間中的平行垂直關(guān)系判斷,考查了學(xué)生邏輯推理,空間想象能力,屬于中檔題.6.A【答案解析】
結(jié)合向量垂直的坐標(biāo)表示,將兩個(gè)條件相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷出充分、必要條件.【題目詳解】由,則,所以;而當(dāng),則,解得或.所以“”是“”的充分不必要條件.故選:A【答案點(diǎn)睛】本小題考查平面向量的運(yùn)算,向量垂直,充要條件等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,應(yīng)用意識(shí).7.A【答案解析】
根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【題目詳解】依題意得,,則,(當(dāng)且僅當(dāng),即時(shí)“”成立.此時(shí),,,的最小值為,故選:A.【答案點(diǎn)睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.8.C【答案解析】
根據(jù)題意,分別計(jì)算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數(shù),由分步計(jì)數(shù)原理計(jì)算可得答案.【題目詳解】解:根據(jù)題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【答案點(diǎn)睛】本題考查排列組合的應(yīng)用,涉及分步計(jì)數(shù)原理問(wèn)題,屬于基礎(chǔ)題.9.D【答案解析】
直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結(jié)論即可;【題目詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個(gè)單位.故選:D.【答案點(diǎn)睛】本題考查三角函數(shù)圖象平移的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.10.C【答案解析】
根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個(gè)選項(xiàng)得到結(jié)果.【題目詳解】對(duì)于,若,則可能為平行或異面直線,錯(cuò)誤;對(duì)于,若,則可能為平行、相交或異面直線,錯(cuò)誤;對(duì)于,若,且,由面面垂直的判定定理可知,正確;對(duì)于,若,只有當(dāng)垂直于的交線時(shí)才有,錯(cuò)誤.故選:.【答案點(diǎn)睛】本題考查空間中線面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.11.D【答案解析】
由圖象可以求出周期,得到,根據(jù)圖象過(guò)點(diǎn)可求,根據(jù)正弦型函數(shù)的性質(zhì)求出單調(diào)增區(qū)間即可.【題目詳解】由圖象知,所以,,又圖象過(guò)點(diǎn),所以,故可取,所以令,解得所以函數(shù)的單調(diào)遞增區(qū)間為故選:.【答案點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),利用“五點(diǎn)法”求函數(shù)解析式,屬于中檔題.12.B【答案解析】
根據(jù)等差數(shù)列的性質(zhì)并結(jié)合已知可求出,再利用等差數(shù)列性質(zhì)可得,即可求出結(jié)果.【題目詳解】因?yàn)椋?,所以,所以,故選:B【答案點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)及前項(xiàng)和公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】由已知,即,取雙曲線頂點(diǎn)及漸近線,則頂點(diǎn)到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.14.【答案解析】
建立平面直角坐標(biāo)系,設(shè),可得,進(jìn)而可得出,,由此將轉(zhuǎn)化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結(jié)果.【題目詳解】根據(jù)題意建立平面直角坐標(biāo)系如圖所示,設(shè),,以、為鄰邊作平行四邊形,則,設(shè),則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當(dāng)時(shí),取最大值.故答案為:.【答案點(diǎn)睛】本題考查了向量的數(shù)量積最值的計(jì)算,將問(wèn)題轉(zhuǎn)化為角的三角函數(shù)的最值問(wèn)題是解答的關(guān)鍵,考查計(jì)算能力,屬于難題.15.6【答案解析】
已知,利用,求出通項(xiàng),然后即可求解【題目詳解】∵,∴當(dāng)時(shí),,∴;當(dāng)時(shí),,∴,故數(shù)列是首項(xiàng)為-2,公比為2的等比數(shù)列,∴.又,∴,∴,∴.【答案點(diǎn)睛】本題考查通項(xiàng)求解問(wèn)題,屬于基礎(chǔ)題16.【答案解析】
根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.【題目詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為.故答案為:.【答案點(diǎn)睛】本題考查了根據(jù)三視圖求簡(jiǎn)單組合體的體積應(yīng)用問(wèn)題,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)【答案解析】
(1)先消去參數(shù),化為直角坐標(biāo)方程,再利用求解.(2)直線與曲線方程聯(lián)立,得,求得弦長(zhǎng)和點(diǎn)到直線的距離,再求的面積.【題目詳解】(1)由已知消去得,則,所以,所以直線的極坐標(biāo)方程為.(2)由,得,設(shè),兩點(diǎn)對(duì)應(yīng)的極分別為,,則,,所以,又點(diǎn)到直線的距離所以【答案點(diǎn)睛】本題主要考查參數(shù)方程、直角坐標(biāo)方程及極坐標(biāo)方程的轉(zhuǎn)化和直線與曲線的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.18.(1);(2).【答案解析】
(1)分類討論,,,即可得出結(jié)果;(2)先由題意,將問(wèn)題轉(zhuǎn)化為即可,再求出,的最小值,解不等式即可得出結(jié)果.【題目詳解】(1)由得,若,則,顯然不成立;若,則,,即;若,則,即,顯然成立,綜上所述,的取值范圍是.(2)由題意知,要使得不等式恒成立,只需,當(dāng)時(shí),,所以;因?yàn)?,所以,解得,結(jié)合,所以的取值范圍是.【答案點(diǎn)睛】本題主要考查含絕對(duì)值不等式的解法,以及由不等式恒成立求參數(shù)的問(wèn)題,熟記分類討論的思想、以及絕對(duì)值不等式的性質(zhì)即可,屬于??碱}型.19.(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ).【答案解析】
(Ⅰ)求出函數(shù)的定義域以及導(dǎo)數(shù),利用導(dǎo)數(shù)可求出該函數(shù)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;(Ⅱ)由題意可知在上恒成立,分和兩種情況討論,在時(shí),構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立;在時(shí),經(jīng)過(guò)分析得出,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立,由此得出,進(jìn)而可得出實(shí)數(shù)的最大值.【題目詳解】(Ⅰ)函數(shù)的定義域?yàn)?當(dāng)時(shí),.令,解得(舍去),.當(dāng)時(shí),,所以,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,所以,函數(shù)在上單調(diào)遞增.因此,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ)由題意,可知在上恒成立.(i)若,,,,構(gòu)造函數(shù),,則,,,.又,在上恒成立.所以,函數(shù)在上單調(diào)遞增,當(dāng)時(shí),在上恒成立.(ii)若,構(gòu)造函數(shù),.,所以,函數(shù)在上單調(diào)遞增.恒成立,即,,即.由題意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,當(dāng),即時(shí),函數(shù)在上單調(diào)遞減,,不合題意,,即.此時(shí)構(gòu)造函數(shù),.,,,,恒成立,所以,函數(shù)在上單調(diào)遞增,恒成立.綜上,實(shí)數(shù)的最大值為【答案點(diǎn)睛】本題考查利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用導(dǎo)數(shù)研究函數(shù)不等式恒成立問(wèn)題,本題的難點(diǎn)在于不斷構(gòu)造新函數(shù)來(lái)求解,考查推理能力與運(yùn)算求解能力,屬于難題.20.(1);(2).【答案解析】
(1)通過(guò)討論的范圍,分為,,三種情形,分別求出不等式的解集即可;(2)通過(guò)分離參數(shù)思想問(wèn)題轉(zhuǎn)化為,根據(jù)絕對(duì)值不等式的性質(zhì)求出最值即可得到的范圍.【題目詳解】(1)當(dāng)時(shí),原不等式等價(jià)于,解得,所以,當(dāng)時(shí),原不等式等價(jià)于,解得,所以此時(shí)不等式無(wú)解,當(dāng)時(shí),原不等式等價(jià)于,解得,所以綜上所述,不等式解集為.(2)由,得,當(dāng)時(shí),恒成立,所以;當(dāng)時(shí),.因?yàn)楫?dāng)且僅當(dāng)即或時(shí),等號(hào)成立,所以;綜上的取值范圍是.【答案點(diǎn)睛】本題考查了解絕對(duì)值不等式問(wèn)題,考查絕對(duì)值不等式的性質(zhì)以及分類討論思想,轉(zhuǎn)化思想,屬于中檔題.21.(1);(2)見解析【答案解析】
(1)根據(jù)點(diǎn)到直線的距離公式可求出a的值,即可得橢圓方程;(2)由題意M(x0,y0),N(x0,y1),P(2,t),根據(jù),可得y1=2y0,由,可得2x0+2y0t=6,再根據(jù)向量的運(yùn)算可得,即可證明.【題目詳解】(1)左頂點(diǎn)A的坐標(biāo)為(﹣a,0),∵=,∴|a﹣5|=3,解得a=2或a=8(舍去),∴橢圓C的標(biāo)準(zhǔn)方程為+y2=1,(2)由題意M(x0,y0),N(x0,y1),P(2,t),則依題意可知y1≠y0,得(x0﹣2x0,y1﹣2y0)(0,y1﹣y0)=0,整理可得y1=2y0,或y1=y(tǒng)0(舍),,得(x0,2y0)(2﹣x0,t﹣2y0)=2,整理可得2x0+2y0t=x02+4y02+2=6,由(1)可得F(,0),∴=(﹣x0,﹣2y0),∴?=(﹣x0,﹣2y0)(2,t)=6﹣2x0﹣2y0t=0,∴NF⊥OP,故過(guò)點(diǎn)N且垂直于OP的直線過(guò)橢圓C的右焦點(diǎn)F.【答案點(diǎn)睛】本題考查了橢圓方程的求法,直線和橢圓的關(guān)系,向量的運(yùn)算,考查了運(yùn)算求
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年快遞運(yùn)輸服務(wù)協(xié)議
- 護(hù)理周實(shí)習(xí)心得體會(huì)5篇
- (合同知識(shí))東清公路一合同段施組(四級(jí))
- 服務(wù)員工作總結(jié)(32篇)
- 幼兒園語(yǔ)言課教案5篇
- 2024年教育機(jī)構(gòu)校園場(chǎng)地租賃協(xié)議
- 專題08函數(shù)的圖象-《2023年高考數(shù)學(xué)命題熱點(diǎn)聚焦與擴(kuò)展》
- 2024年攪拌站工程分包合同范本
- 傳聲筒的科學(xué)教案7篇
- 公司員工年底總結(jié)匯報(bào)(3篇)
- 吊籃安全檢查記錄表
- IATF16949條款與過(guò)程的對(duì)應(yīng)關(guān)系
- 華科版五年級(jí)全冊(cè)信息技術(shù)教案(共24課時(shí))
- 設(shè)備供貨安裝方案(通用版)
- 計(jì)算機(jī)基礎(chǔ)全套完整版ppt教學(xué)教程最新最全
- 三年級(jí)數(shù)學(xué)上冊(cè)課件-8.1.1 認(rèn)識(shí)幾分之一 人教版(共20張PPT)
- 英語(yǔ)學(xué)習(xí)重要性
- 《應(yīng)用寫作》精品課程教案
- 水墨中國(guó)風(fēng)古風(fēng)山水典雅通用PPT模板
- 語(yǔ)文四年級(jí)上冊(cè)第五單元習(xí)作: 生活萬(wàn)花筒課件(PPT18頁(yè))
- T∕CAIAS 001-2021 褐藻提取物 巖藻黃素
評(píng)論
0/150
提交評(píng)論