![山東省濟南市天橋區(qū)2022-2023學年數(shù)學九年級上冊期末質量跟蹤監(jiān)視試題含解析_第1頁](http://file4.renrendoc.com/view/2e21776f0c82f8c018259e1efc0ed252/2e21776f0c82f8c018259e1efc0ed2521.gif)
![山東省濟南市天橋區(qū)2022-2023學年數(shù)學九年級上冊期末質量跟蹤監(jiān)視試題含解析_第2頁](http://file4.renrendoc.com/view/2e21776f0c82f8c018259e1efc0ed252/2e21776f0c82f8c018259e1efc0ed2522.gif)
![山東省濟南市天橋區(qū)2022-2023學年數(shù)學九年級上冊期末質量跟蹤監(jiān)視試題含解析_第3頁](http://file4.renrendoc.com/view/2e21776f0c82f8c018259e1efc0ed252/2e21776f0c82f8c018259e1efc0ed2523.gif)
![山東省濟南市天橋區(qū)2022-2023學年數(shù)學九年級上冊期末質量跟蹤監(jiān)視試題含解析_第4頁](http://file4.renrendoc.com/view/2e21776f0c82f8c018259e1efc0ed252/2e21776f0c82f8c018259e1efc0ed2524.gif)
![山東省濟南市天橋區(qū)2022-2023學年數(shù)學九年級上冊期末質量跟蹤監(jiān)視試題含解析_第5頁](http://file4.renrendoc.com/view/2e21776f0c82f8c018259e1efc0ed252/2e21776f0c82f8c018259e1efc0ed2525.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,AC是⊙O的內接正四邊形的一邊,點B在弧AC上,且BC是⊙O的內接正六邊形的一邊.若AB是⊙O的內接正n邊形的一邊,則n的值為()A.6 B.8 C.10 D.122.一塊圓形宣傳標志牌如圖所示,點,,在上,垂直平分于點,現(xiàn)測得,,則圓形標志牌的半徑為()A. B. C. D.3.的值等于()A. B. C. D.14.拋物線的頂點坐標是()A.(2,?1) B.(2,?-1) C.(-2,?1) D.(-2,?-1)5.如圖,O是矩形ABCD對角線AC的中點,M是AD的中點,若BC=8,OB=5,則OM的長為()A.1 B.2 C.3 D.46.如圖,經(jīng)過原點的⊙與軸分別交于兩點,點是劣弧上一點,則()A.是銳角 B.是直角 C.是鈍角 D.大小無法確定7.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的個數(shù)有()A.1個 B.2個 C.3個 D.4個8.如圖,在矩形ABCD中,AD=10,AB=6,E為BC上一點,DE平分∠AEC,則CE的長為()A.1 B.2C.3 D.49.已知是方程的一個根,則代數(shù)式的值等于()A.3 B.2 C.0 D.110.如圖所示,已知A(,y1),B(2,y2)為反比例函數(shù)圖像上的兩點,動點P(x,0)在x正半軸上運動,當線段AP與線段BP之差達到最大時,點P的坐標是()A.(,0) B.(1,0) C.(,0) D.(,0)11.如圖,已知二次函數(shù)()的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結論:①當x>3時,y<0;②3a+b<0;③;④;其中正確的結論是()A.①③④ B.①②③ C.①②④ D.①②③④12.如圖,⊙O中弦AB=8,OC⊥AB,垂足為E,如果CE=2,那么⊙O的半徑長是()A.4 B.5 C.6 D.1°二、填空題(每題4分,共24分)13.如圖,在平面直角坐標系xOy中,已知點A(3,3)和點B(7,0),則tan∠ABO=_____.14.小亮在投籃訓練中,對多次投籃的數(shù)據(jù)進行記錄.得到如下頻數(shù)表:投籃次數(shù)20406080120160200投中次數(shù)1533496397128160投中的頻率0.750.830.820.790.810.80.8估計小亮投一次籃,投中的概率是______.15.定義:在平面直角坐標系中,我們將函數(shù)的圖象繞原點逆時針旋轉后得到的新曲線稱為“逆旋拋物線”.(1)如圖①,己知點,在函數(shù)的圖象上,拋物線的頂點為,若上三點、、是、、旋轉后的對應點,連結,、,則__________;(2)如圖②,逆旋拋物線與直線相交于點、,則__________.16.在1:5000的地圖上,某兩地間的距離是,那么這兩地的實際距離為______________千米.17.如圖,河壩橫斷面迎水坡AB的坡比是1:(坡比是坡面的鉛直高度BC與水平寬度AC之比),壩高BC=3m,則坡面AB的長度是.18.如圖:⊙A、⊙B、⊙C兩兩不相交,且半徑均為1,則圖中三個陰影扇形的面積之和為.三、解答題(共78分)19.(8分)宋家州主題公園擬修建一座柳宗元塑像,如圖所示,柳宗元塑像(塑像中高者)在高的假山上,在處測得塑像底部的仰角為,再沿方向前進到達處,測得塑像頂部的仰角為,求柳宗元塑像的高度.(精確到.參考數(shù)據(jù):,,,)20.(8分)如圖,有一直徑是20厘米的圓型紙片,現(xiàn)從中剪出一個圓心角是90°的扇形ABC.(1)求剪出的扇形ABC的周長.(2)求被剪掉的陰影部分的面積.21.(8分)在平面直角坐標系中,的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).(1)畫出關于原點對稱的;(2)將繞順時針旋轉,畫出旋轉后得到的,并直接寫出此過程中線段掃過圖形的面積.(結果保留)22.(10分)解方程:2(x-3)2=x2-923.(10分)如圖1,在平面直角坐標系xOy中,已知△ABC,∠ABC=90°,頂點A在第一象限,B,C在x軸的正半軸上(C在B的右側),BC=2,AB=2,△ADC與△ABC關于AC所在的直線對稱.(1)當OB=2時,求點D的坐標;(2)若點A和點D在同一個反比例函數(shù)的圖象上,求OB的長;(3)如圖2,將第(2)題中的四邊形ABCD向右平移,記平移后的四邊形為A1B1C1D1,過點D1的反比例函數(shù)y=(k≠0)的圖象與BA的延長線交于點P.問:在平移過程中,是否存在這樣的k,使得以點P,A1,D為頂點的三角形是直角三角形?若存在,請直接寫出所有符合題意的k的值;若不存在,請說明理由.24.(10分)如圖,AB為⊙O的直徑,弦AC的長為8cm.(1)尺規(guī)作圖:過圓心O作弦AC的垂線DE,交弦AC于點D,交優(yōu)弧于點E;(保留作圖痕跡,不要求寫作法);(2)若DE的長為8cm,求直徑AB的長.25.(12分)為吸引市民組團去風景區(qū)旅游,觀光旅行社推出了如下收費標準:某單位員工去風景區(qū)旅游,共支付給旅行社旅游費用10500元,請問該單位這次共有多少員工去風景區(qū)旅游?26.方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).(1)作出△ABC關于y軸對稱的,并寫出的坐標;(2)作出△ABC繞點O逆時針旋轉90°后得到的,并求出所經(jīng)過的路徑長.
參考答案一、選擇題(每題4分,共48分)1、D【分析】連接AO、BO、CO,根據(jù)中心角度數(shù)=360°÷邊數(shù)n,分別計算出∠AOC、∠BOC的度數(shù),根據(jù)角的和差則有∠AOB=30°,根據(jù)邊數(shù)n=360°÷中心角度數(shù)即可求解.【詳解】連接AO、BO、CO,∵AC是⊙O內接正四邊形的一邊,∴∠AOC=360°÷4=90°,∵BC是⊙O內接正六邊形的一邊,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故選:D.【點睛】本題考查正多邊形和圓,解題的關鍵是根據(jù)正方形的性質、正六邊形的性質求出中心角的度數(shù).2、B【分析】連結,,設半徑為r,根據(jù)垂徑定理得,在中,由勾股定理建立方程,解之即可求得答案.【詳解】連結,,如圖,設半徑為,∵,,∴,點、、三點共線,∵,∴,在中,∵,,即,解得,故選B.【點睛】本題考查勾股定理,關鍵是利用垂徑定理解答.3、B【分析】根據(jù)sin60°以及tan45°的值求解即可.【詳解】sin60°=,tan45°=1,所以sin60°+tan45°=.故選B.【點睛】本題主要考查特殊角的三角函數(shù)值,熟記特殊角的三角函數(shù)值是解題的關鍵.4、C【分析】已知拋物線的頂點式可直接寫出頂點坐標.【詳解】解:由拋物線的頂點坐標可知,拋物線y=(x+2)2+1的頂點坐標是(-2,1).
故選C.【點睛】本題考查的是拋物線的頂點坐標,即拋物線y=(x+a)2+h中,其頂點坐標為(-a,h).5、C【分析】由O是矩形ABCD對角線AC的中點,可求得AC的長,然后運用勾股定理求得AB、CD的長,又由M是AD的中點,可得OM是△ACD的中位線,即可解答.【詳解】解:∵O是矩形ABCD對角線AC的中點,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中點,∴OM=CD=1.故答案為C.【點睛】本題考查了矩形的性質、直角三角形的性質以及三角形中位線的性質,掌握直角三角形斜邊上的中線等于斜邊的一半是解題的關鍵.6、B【分析】根據(jù)圓周角定理的推論即可得出答案.【詳解】∵和對應著同一段弧,∴,∴是直角.故選:B.【點睛】本題主要考查圓周角定理的推論,掌握圓周角定理的推論是解題的關鍵.7、B【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸,如果一個圖形繞某一點旋轉180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.【詳解】(1)是軸對稱圖形,不是中心對稱圖形.不符合題意;(2)不是軸對稱圖形,是中心對稱圖形,不符合題意;(3)是軸對稱圖形,也是中心對稱圖形,符合題意;(4)是軸對稱圖形,也是中心對稱圖形,符合題意;故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形關鍵是要尋找對稱中心,圖形旋轉180°后與原圖重合.8、B【分析】根據(jù)平行線的性質以及角平分線的性質證明∠ADE=∠AED,根據(jù)等角對等邊,即可求得AE的長,在直角△ABE中,利用勾股定理求得BE的長,則CE的長即可求解.【詳解】解:∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE=AE2∴CE=BC﹣BE=AD﹣BE=10﹣8=1.故選B.考點:矩形的性質;角平分線的性質.9、A【分析】根據(jù)題意,將代入方程得,移項即可得結果.【詳解】∵是方程的一個根,∴,∴,故選A.【點睛】本題考查一元二次方程的解,已知方程的根,只需將根代入方程即可.10、D【分析】求出AB的坐標,設直線AB的解析式是y=kx+b,把A、B的坐標代入求出直線AB的解析式,根據(jù)三角形的三邊關系定理得出在△ABP中,|AP-BP|<AB,延長AB交x軸于P′,當P在P′點時,PA-PB=AB,此時線段AP與線段BP之差達到最大,求出直線AB于x軸的交點坐標即可.【詳解】∵把A(,y1),B(2,y2)代入反比例函數(shù)y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三邊關系定理得:|AP-BP|<AB,∴延長AB交x軸于P′,當P在P′點時,PA-PB=AB,即此時線段AP與線段BP之差達到最大,設直線AB的解析式是y=kx+b,把A、B的坐標代入得:,解得:k=-1,b=,∴直線AB的解析式是y=-x+,當y=0時,x=,即P(,0),故選D.【點睛】本題考查了三角形的三邊關系定理和用待定系數(shù)法求一次函數(shù)的解析式的應用,解此題的關鍵是確定P點的位置,題目比較好,但有一定的難度.11、B【分析】①由拋物線的對稱性可求得拋物線與x軸令一個交點的坐標為(3,1),當x>3時,y<1,故①正確;②拋物線開口向下,故a<1,∵,∴2a+b=1.∴3a+b=1+a=a<1,故②正確;③設拋物線的解析式為y=a(x+1)(x﹣3),則,令x=1得:y=﹣3a.∵拋物線與y軸的交點B在(1,2)和(1,3)之間,∴.解得:,故③正確;④.∵拋物線y軸的交點B在(1,2)和(1,3)之間,∴2≤c≤3,由得:,∵a<1,∴,∴c﹣2<1,∴c<2,與2≤c≤3矛盾,故④錯誤.【詳解】解:①由拋物線的對稱性可求得拋物線與x軸令一個交點的坐標為(3,1),當x>3時,y<1,故①正確;②拋物線開口向下,故a<1,∵,∴2a+b=1.∴3a+b=1+a=a<1,故②正確;③設拋物線的解析式為y=a(x+1)(x﹣3),則,令x=1得:y=﹣3a.∵拋物線與y軸的交點B在(1,2)和(1,3)之間,∴.解得:,故③正確;④.∵拋物線y軸的交點B在(1,2)和(1,3)之間,∴2≤c≤3,由得:,∵a<1,∴,∴c﹣2<1,∴c<2,與2≤c≤3矛盾,故④錯誤.故選B.【點睛】本題考查二次函數(shù)圖象與系數(shù)的關系,結合圖像,數(shù)形結合的思想的運用是本題的解題關鍵..12、B【分析】連接OA,由于半徑OC⊥AB,利用垂徑定理可知AB=2AE,設OA=OC=x,在Rt△AOE中利用勾股定理易求OA.【詳解】解:連接OA,∵OC⊥AB,∴AB=2AE=8,∴AE=4,設OA=OC=x,則OE=OC-CE=x-2在Rt△AOE由勾股定理得:即:,解得:,故選擇:B【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.二、填空題(每題4分,共24分)13、.【分析】過A作AC⊥OB于點C,由點的坐標求得OC、AC、OB,進而求BC,在Rt△ABC中,由三角函數(shù)定義便可求得結果.【詳解】解:過A作AC⊥OB于點C,如圖,∵A(3,3),點B(7,0),∴AC=OC=3,OB=7,∴BC=OB﹣OC=4,∴tan∠ABO=,故答案為:.【點睛】本題主要考查了解直角三角形的應用,平面直角坐標系,關鍵是構造直角三角形.14、0.1【分析】由小亮每次投籃的投中的頻率繼而可估計出這名球員投一次籃投中的概率.【詳解】解:∵0.75≈0.1,0.13≈0.1,0.12≈0.1,0.79≈0.1,…,∴可以看出小亮投中的頻率大都穩(wěn)定在0.1左右,∴估計小亮投一次籃投中的概率是0.1,故答案為:0.1.【點睛】本題比較容易,考查了利用頻率估計概率.大量反復試驗下頻率值即概率.概率=所求情況數(shù)與總情況數(shù)之比.15、3;【分析】(1)求出點A、B的坐標,再根據(jù)割補法求△ABC的面積即可得到;
(2)將旋轉后的MN和拋物線旋轉到之前的狀態(tài),求出直線解析式及交點坐標,利用割補法求面積即可.【詳解】解:(1)在上,令x=0,解得y=2,所以C(0,2),OC=2,將,代入,解得a=3,b=2,∴,,設,的直線解析式為,則,解得,直線AB解析式為,令x=0,解得,y=4,即OD=4,∴,∴(2)如圖,由旋轉知,,,∴,,直線,令,得∴∴∴【點睛】此題考查了二次函數(shù)與幾何問題相結合的問題,將三角形的面積轉化為解題關鍵.16、1【分析】根據(jù)比例尺的意義,可得答案.【詳解】解:,故答案為:1.【點睛】本題考查了比例尺,利用比例尺的意義是解題關鍵,注意把厘米化成千米.17、6米.【解析】試題分析:在Rt△ABC中,已知坡面AB的坡比以及鉛直高度BC的值,通過解直角三角形即可求出斜面AB的長.試題解析:在Rt△ABC中,BC=3米,tanA=1:;∴AC=BC÷tanA=3米,∴AB=米.考點:解直角三角形的應用.18、.【解析】試題分析:根據(jù)三角形的內角和是180°和扇形的面積公式進行計算.試題解析:∵∠A+∠B+∠C=180°,∴陰影部分的面積=.考點:扇形面積的計算.三、解答題(共78分)19、柳宗元塑像的高度約為.【分析】在中,利用正切函數(shù)的定義求得AC的長,繼而求得BC的長,在中,同樣利用正切函數(shù)的定義求得CD的長,從而求得結果.【詳解】在中,∵,,,∴,∴∵∴在中,∵,,,∴,∴∴答:柳宗元塑像的高度約為【點睛】本題考查了解直角三角形的應用-俯角仰角問題,要先將實際問題抽象成數(shù)學問題,分別在兩個不同的直角三角形中,借助三角函數(shù)的知識,研究角和邊的關系.20、(1)(10+5)cm;(1)50πcm1.【分析】(1)連接BC,首先證明BC是直徑,求出AB,AC,利用弧長公式求出弧BC的長即可解決問題.(1)根據(jù)S陰=S圓O﹣S扇形ABC計算即可解決問題.【詳解】解:(1)如圖,連接BC∵∠BAC=90°,∴BC是⊙O的直徑,∴BC=10cm,∵AB=AC,∴AB=AC=10,∴的長==5π,∴扇形ABC的周長=(10+5)cm.(1)S陰=S圓O﹣S扇形ABC=π?101﹣=50πcm1.【點睛】本題考查了弧長計算和不規(guī)則圖形的面積計算,熟練掌握弧長公式與扇形面積公式是解題的關鍵.21、(1)如圖所示,見解析;(2)【分析】(1)利用畫中心對稱圖形的作圖方法直接畫出關于原點對稱的即可;(2)利用畫旋轉圖形的作圖方法直接畫出,并利用扇形公式求出線段掃過圖形的面積.【詳解】解:(1)如圖所示(2)作圖見圖;由題意可知線段掃過圖形的面積為扇形利用扇形公式:.【點睛】本題考查中心對稱圖形以及旋轉圖形的作圖,熟練掌握相關作圖技巧以及利用扇形公式是解題關鍵.22、x1=3,x2=1【分析】根據(jù)平方差公式將等號右邊因式分解,再移項并提取公因式,利用因式分解法即可求解.【詳解】解:2(x-3)2=x2-12(x-3)2-(x+3)(x-3)=0(x-3)(2x-6-x-3)=0x1=3,x2=1.【點睛】本題考查解一元二次方程,根據(jù)方程特點選擇合適的求解方法是解題的關鍵.23、(1)點D坐標為(5,);(2)OB=2;(2)k=12.【解析】分析:(1)如圖1中,作DE⊥x軸于E,解直角三角形清楚DE,CE即可解決問題;(2)設OB=a,則點A的坐標(a,2),由題意CE=1.DE=,可得D(2+a,),點A、D在同一反比例函數(shù)圖象上,可得2a=(2+a),求出a的值即可;(2)分兩種情形:①如圖2中,當∠PA1D=90°時.②如圖2中,當∠PDA1=90°時.分別構建方程解決問題即可;詳解:(1)如圖1中,作DE⊥x軸于E.∵∠ABC=90°,∴tan∠ACB=,∴∠ACB=60°,根據(jù)對稱性可知:DC=BC=2,∠ACD=∠ACB=60°,∴∠DCE=60°,∴∠CDE=90°-60°=20°,∴CE=1,DE=,∴OE=OB+BC+CE=5,∴點D坐標為(5,).(2)設OB=a,則點A的坐標(a,2),由題意CE=1.DE=,可得D(2+a,),∵點A、D在同一反比例函數(shù)圖象上,∴2a=(2+a),∴a=2,∴OB=2.(2)存在.理由如下:①如圖2中,當∠PA1D=90°時.∵AD∥PA1,∴∠ADA1=180°-∠PA1D=90°,在Rt△ADA1中,∵∠DAA1=20°,AD=2,∴AA1==4,在Rt△APA1中,∵∠APA1=60°,∴PA=,∴PB=,設P(m,),則D1(m+7,),∵P、A1在同一反比例函數(shù)圖象上,∴m=(m+7),解得m=2,∴P(2,),∴k=10.②如圖2中,當∠PDA1=90°時.∵∠PAK=∠KDA1=90°,∠AKP=∠DKA1,∴△AKP∽△DKA1,∴.∴,∵∠AKD=∠PKA1,∴△KAD∽△KPA1,∴∠KPA1=∠KAD=20°,∠ADK=∠KA1P=20°,∴∠APD=∠ADP=20°,∴AP=AD=2,AA1=6,設P(m,4),則D1(m+9,),∵P、A1在同一反比例函數(shù)圖象上,∴4m=(m+9),解得m=2,∴P(2,4),∴k=12.點睛:本題考查反比例函數(shù)綜合題、相似三角形的判定和性質、銳角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國差壓式孔板流量計行業(yè)投資前景及策略咨詢研究報告
- 2025年小檔后軸項目可行性研究報告
- 2025年商務飲水機項目可行性研究報告
- 2025年冶金工業(yè)托輪鏈項目可行性研究報告
- 2025至2030年中國面包墊紙數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國錐柄鉆頭數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年聚氯乙烯絕緣和護套控制電纜項目投資價值分析報告
- 2025至2030年中國解熱止痛散數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國膠柄電烙鐵數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國硫酸鋯數(shù)據(jù)監(jiān)測研究報告
- 2024-2025學年初中七年級上學期數(shù)學期末綜合卷(人教版)含答案
- 體育活動策劃與組織課件
- 公司違規(guī)違紀連帶處罰制度模版(2篇)
- 2025屆高考物理二輪總復習第一編專題2能量與動量第1講動能定理機械能守恒定律功能關系的應用課件
- 內業(yè)資料承包合同個人與公司的承包合同
- 2024年計算機二級WPS考試題庫(共380題含答案)
- 【履職清單】2024版安全生產(chǎn)責任體系重點崗位履職清單
- 跨學科實踐活動10調查我國航天科技領域中新型材料新型能源的應用課件九年級化學人教版(2024)下冊
- 2022年全國醫(yī)學博士英語統(tǒng)一考試試題
- 學校工作總結和存在的不足及整改措施
- Petrel中文操作手冊(1-3)
評論
0/150
提交評論