![云南省騰沖市十五所學校2022年數(shù)學九年級上冊期末監(jiān)測試題含解析_第1頁](http://file4.renrendoc.com/view/b792d14b70304c6a36eb557964533f13/b792d14b70304c6a36eb557964533f131.gif)
![云南省騰沖市十五所學校2022年數(shù)學九年級上冊期末監(jiān)測試題含解析_第2頁](http://file4.renrendoc.com/view/b792d14b70304c6a36eb557964533f13/b792d14b70304c6a36eb557964533f132.gif)
![云南省騰沖市十五所學校2022年數(shù)學九年級上冊期末監(jiān)測試題含解析_第3頁](http://file4.renrendoc.com/view/b792d14b70304c6a36eb557964533f13/b792d14b70304c6a36eb557964533f133.gif)
![云南省騰沖市十五所學校2022年數(shù)學九年級上冊期末監(jiān)測試題含解析_第4頁](http://file4.renrendoc.com/view/b792d14b70304c6a36eb557964533f13/b792d14b70304c6a36eb557964533f134.gif)
![云南省騰沖市十五所學校2022年數(shù)學九年級上冊期末監(jiān)測試題含解析_第5頁](http://file4.renrendoc.com/view/b792d14b70304c6a36eb557964533f13/b792d14b70304c6a36eb557964533f135.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.小明沿著坡度為的山坡向上走了,則他升高了()A. B. C. D.2.用配方法解方程時,原方程應變形為()A. B. C. D.3.如圖,△ABC中,DE∥BC,BE與CD交于點O,AO與DE,BC交于點N、M,則下列式子中錯誤的是()A. B. C. D.4.如圖,在菱形ABCD中,AB=5,對角線AC=6.若過點A作AE⊥BC,垂足為E,則AE的長為()A.4 B.2.4 C.4.8 D.55.如圖,拋物線和直線,當時,的取值范圍是()A. B.或 C.或 D.6.如圖,截的三條邊所得的弦長相等,若,則的度數(shù)為()A. B. C. D.7.如圖,,,EF與AC交于點G,則是相似三角形共有()A.3對 B.5對 C.6對 D.8對8.劉徽是我國古代一位偉大的數(shù)學家,他的杰作《九章算術注》和《海寶算經》是中國寶貴的文化遺產.他所提出的割圓術可以估算圓周率.割圓術是依次用圓內接正六邊形、正十二邊形…去逼近圓.如圖,的半徑為1,則的內接正十二邊形面積為()A.1 B.3 C.3.1 D.3.149.已知⊙O中最長的弦為8cm,則⊙O的半徑為()cm.A.2 B.4 C.8 D.1610.如圖,四邊形ABCD是⊙O的內接四邊形,點E在邊CD的延長線上,若∠ABC=110°,則∠ADE的度數(shù)為()A.55° B.70° C.90° D.110°11.如圖,矩形的面積為4,反比例函數(shù)()的圖象的一支經過矩形對角線的交點,則該反比例函數(shù)的解析式是()A. B. C. D.12.如圖,已知拋物線y1=x1-1x,直線y1=-1x+b相交于A,B兩點,其中點A的橫坐標為1.當x任取一值時,x對應的函數(shù)值分別為y1,y1,取m=(|y1-y1|+y1+y1).則()A.當x<-1時,m=y(tǒng)1 B.m隨x的增大而減小C.當m=1時,x=0 D.m≥-1二、填空題(每題4分,共24分)13.一個不透明的袋中裝有若干個紅球,為了估計袋中紅球的個數(shù),小文在袋中放入3個白球(每個球除顏色外其余都與紅球相同).搖勻后每次隨機從袋中摸出一個球,記下顏色后放回袋中,通過大量重復摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.7左右,則袋中紅球約有_____個.14.已知反比例函數(shù)的圖象經過點,則這個函數(shù)的表達式為__________.15.一張直角三角形紙片,,,,點為邊上的任一點,沿過點的直線折疊,使直角頂點落在斜邊上的點處,當是直角三角形時,則的長為_____.16.如圖,在正方形ABCD中,AB=a,點E,F(xiàn)在對角線BD上,且∠ECF=∠ABD,將△BCE繞點C旋轉一定角度后,得到△DCG,連接FG.則下列結論:①∠FCG=∠CDG;②△CEF的面積等于;③FC平分∠BFG;④BE2+DF2=EF2;其中正確的結論是_____.(填寫所有正確結論的序號)17.若二次根式有意義,則x的取值范圍是▲.18.如圖,點A,B的坐標分別為(1,4)和(4,4),拋物線y=a(x﹣m)2+n的頂點在線段AB上運動,與x軸交于C、D兩點(C在D的左側),點C的橫坐標最小值為﹣3,則點D的橫坐標最大值為_____.三、解答題(共78分)19.(8分)如圖,中,,,為內部一點,且.(1)求證:;(2)求證:;(3)若點到三角形的邊,,的距離分別為,,,求證.20.(8分)如圖,在四邊形中,,,點分別在上,且.(1)求證:∽;(2)若,,,求的長.21.(8分)定義:點P在△ABC的邊上,且與△ABC的頂點不重合.若滿足△PAB、△PBC、△PAC至少有一個三角形與△ABC相似(但不全等),則稱點P為△ABC的自相似點.如圖①,已知點A、B、C的坐標分別為(1,0)、(3,0)、(0,1).(1)若點P的坐標為(2,0),求證點P是△ABC的自相似點;(2)求除點(2,0)外△ABC所有自相似點的坐標;(3)如圖②,過點B作DB⊥BC交直線AC于點D,在直線AC上是否存在點G,使△GBD與△GBC有公共的自相似點?若存在,請舉例說明;若不存在,請說明理由.22.(10分)如圖1,△ABC是等邊三角形,點D在BC上,BD=2CD,點F是射線AC上的動點,點M是射線AD上的動點,∠AFM=∠DAB,F(xiàn)M的延長線與射線AB交于點E,設AM=x,△AME與△ABD重疊部分的面積為y,y與x的函數(shù)圖象如圖2所示(其中0<x≤m,m<x<n,x≥n時,函數(shù)的解析式不同).(1)填空:AB=_______;(2)求出y與x的函數(shù)關系式,并求出x的取值范圍.23.(10分)如圖以的一邊為直徑作⊙,⊙與邊的交點恰好為的中點,過點作⊙的切線交邊于點.(1)求證:;(2)若,求的值.24.(10分)如圖,拋物線y=ax2+bx+2交x軸于點A(-1,0),B(n,0)(點A在點B的左邊),交y軸于點C.(1)當n=2時求△ABC的面積.(2)若拋物線的對稱軸為直線x=m,當1<n<4時,求m的取值范圍.25.(12分)化簡:26.如圖,在中,點在邊上,點在邊上,且,.(1)求證:∽;(2)若,,求的長.
參考答案一、選擇題(每題4分,共48分)1、A【分析】根據題意作出圖形,然后根據坡度為1:2,設BC=x,AC=2x,根據AB=1000m,利用勾股定理求解.【詳解】解:根據題意作出圖形,∵坡度為1:2,∴設BC=x,AC=2x,∴,∵AB=1000m,∴,解得:,故選A.【點睛】本題考查了解直角三角形的應用,解答本題的關鍵是根據坡度構造直角三角形然后求解.2、A【分析】方程常數(shù)項移到右邊,兩邊加上1變形即可得到結果.【詳解】方程移項得:x2?2x=5,配方得:x2?2x+1=1,即(x?1)2=1.故選:A.【點睛】此題考查了解一元二次方程?配方法,熟練掌握完全平方公式是解本題的關鍵.3、D【解析】試題分析:∵DE∥BC,∴△ADN∽△ABM,△ADE∽△ABC,△DOE∽△COB,∴,,,所以A、B、C正確;∵DE∥BC,∴△AEN∽△ACM,∴,∴,所以D錯誤.故選D.點睛:本題考查了相似三角形的判定與性質.注意平行于三角形的一邊的直線與其他兩邊相交,所構成的三角形與原三角形相似;相似三角形對應邊成比例.注意數(shù)形結合思想的應用.4、C【分析】連接BD,根據菱形的性質可得AC⊥BD,AO=AC,然后根據勾股定理計算出BO長,再算出菱形的面積,然后再根據面積公式BC?AE=AC?BD可得答案.【詳解】連接BD,交AC于O點,∵四邊形ABCD是菱形,∴AB=BC=CD=AD=5,∴∴∵AC=6,∴AO=3,∴∴DB=8,∴菱形ABCD的面積是∴BC?AE=24,故選C.5、B【分析】聯(lián)立兩函數(shù)解析式求出交點坐標,再根據函數(shù)圖象寫出拋物線在直線上方部分的的取值范圍即可.【詳解】解:聯(lián)立,解得,,兩函數(shù)圖象交點坐標為,,由圖可知,時的取值范圍是或.故選:B.【點睛】本題考查了二次函數(shù)與不等式,此類題目利用數(shù)形結合的思想求解更加簡便.6、C【分析】先利用截的三條邊所得的弦長相等,得出即是的內心,從而∠1=∠2,∠3=∠4,進一步求出的度數(shù).【詳解】解:過點分別作、、,垂足分別為、、,連接、、、、、、、,如圖:∵,∴∴∴點是三條角平分線的交點,即三角形的內心∴,∵∴∴.故選:C【點睛】本題考查的是三角形的內心、角平分線的性質、全等三角形的判定和性質以及三角形內角和定理,比較簡單.7、C【分析】根據相似三角形的判定即可判斷.【詳解】圖中三角形有:,,,,∵,∴共有6個組合分別為:∴,,,,,故選C.【點睛】此題主要考查相似三角形的判定,解題的關鍵是熟知相似三角形的判定定理.8、B【分析】根據直角三角形的30度角的性質以及三角形的面積公式計算即可解決問題.【詳解】解:如圖,作AC⊥OB于點C.∵⊙O的半徑為1,∴圓的內接正十二邊形的中心角為360°÷12=30°,∴過A作AC⊥OB,∴AC=OA=,∴圓的內接正十二邊形的面積S=12××1×=3.故選B.【點睛】此題主要考查了正多邊形和圓,三角形的面積公式等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.9、B【解析】⊙O最長的弦就是直徑從而不難求得半徑的長.【詳解】∵⊙O中最長的弦為8cm,即直徑為8cm,∴⊙O的半徑為4cm.故選B.【點睛】本題考查弦,直徑等知識,記住圓中的最長的弦就是直徑是解題的關鍵.10、D【解析】∵四邊形ABCD是⊙O的內接四邊形,∴∠ABC+∠ADC=180°,又∵∠ADC+∠ADE=180°,∴∠ADE=∠ABC=110°.故選D.點睛:本題是一道考查圓內接四邊形性質的題,解題的關鍵是知道圓內接四邊形的性質:“圓內接四邊形對角互補”.11、D【分析】過P點作PE⊥x軸于E,PF⊥y軸于F,根據矩形的性質得S矩形OEPF=S矩形OACB=1,然后根據反比例函數(shù)的比例系數(shù)k的幾何意義求解.【詳解】過P點作PE⊥x軸于E,PF⊥y軸于F,如圖所示:
∵四邊形OACB為矩形,點P為對角線的交點,
∴S矩形OEPF=S矩形OACB=×4=1.
∴k=-1,
所以反比例函數(shù)的解析式是:.故選:D【點睛】考查了反比例函數(shù)的比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.12、D【分析】將點的橫坐標代入,求得,將,代入求得,然后將與聯(lián)立求得點的坐標,然后根據函數(shù)圖象化簡絕對值,最后根據函數(shù)的性質,可得函數(shù)的增減性以及的范圍.【詳解】將代入,得,點的坐標為.將,代入,得,.將與聯(lián)立,解得:,或,.點的坐標為.∴當x<-1時,,∴m=(|y1-y1|+y1+y1)=(y1-y1+y1+y1)=y1,故錯誤;當時,,.當時,.當時,,.∴當x<1時,m隨x的增大而減小,故錯誤;令,代入,求得:或(舍去),令,代入,求得:,∴當m=1時,x=0或,故錯誤.∵m=,畫出圖像如圖,∴.∴D正確.故選.【點睛】本題主要考查的是二次函數(shù)與一次函數(shù)的綜合,根據函數(shù)圖象比較出與的大小關系,從而得到關于x的函數(shù)關系式,是解題的關鍵.二、填空題(每題4分,共24分)13、1【分析】根據口袋中有3個白球,利用小球在總數(shù)中所占比例得出與實驗比例應該相等求出即可.【詳解】解:∵通過大量重復摸球試驗后發(fā)現(xiàn),摸到紅球的頻率是0.1,口袋中有3個白球,∵假設有x個紅球,∴,解得:x=1,經檢驗x=1是方程的根,∴口袋中有紅球約有1個.故答案為:1.【點睛】此題主要考查了用樣本估計總體,根據已知得出小球在總數(shù)中所占比例得出與實驗比例應該相等是解決問題的關鍵.14、【分析】把點的坐標代入根據待定系數(shù)法即可得解.【詳解】解:∵反比例函數(shù)y=經過點M(-3,2),
∴2=,
解得k=-6,
所以,反比例函數(shù)表達式為y=.
故答案為:y=.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式,是求函數(shù)解析式常用的方法,需要熟練掌握并靈活運用.15、或【分析】依據沿過點D的直線折疊,使直角頂點C落在斜邊AB上的點E處,當△BDE是直角三角形時,分兩種情況討論:∠DEB=90°或∠BDE=90°,分別依據勾股定理或者相似三角形的性質,即可得到CD的長【詳解】分兩種情況:①若,則,,連接,則,,,設,則,中,,解得,;②若,則,,四邊形是正方形,,,,,設,則,,,,解得,,綜上所述,的長為或,故答案為或.【點睛】此題考查折疊的性質,勾股定理,全等三角形的判定與性質,解題關鍵在于畫出圖形16、①③④【分析】由正方形的性質可得AB=BC=CD=AD=a,∠ABD=∠CBD=∠ADB=∠BDC=45°,由旋轉的性質可得∠CBE=∠CDG=45°,BE=DG,CE=CG,∠DCG=∠BCE,由SAS可證△ECF≌△GCF,可得EF=FG,∠EFC=∠GFC,S△ECF=S△CFG,即可求解.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD=AD=a,∠ABD=∠CBD=∠ADB=∠BDC=45°,∴∠ECF=∠ABD=45°,∴∠BCE+∠FCD=45°,∵將△BCE繞點C旋轉一定角度后,得到△DCG,∴∠CBE=∠CDG=45°,BE=DG,CE=CG,∠DCG=∠BCE,∴∠FCG=∠ECF=45°,∴∠FCG=∠CDG=45°,故①正確,∵EC=CG,∠FCG=∠ECF,F(xiàn)C=FC,∴△ECF≌△GCF(SAS)∴EF=FG,∠EFC=∠GFC,S△ECF=S△CFG,∴CF平分∠BFG,故③正確,∵∠BDG=∠BDC+∠CDG=90°,∴DG2+DF2=FG2,∴BE2+DF2=EF2,故④正確,∵DF+DG>FG,∴BE+DF>EF,∴S△CEF<S△BEC+S△DFC,∴△CEF的面積<S△BCD=,故②錯誤;故答案為:①③④【點睛】本題是一道關于旋轉的綜合題目,要會利用數(shù)形結合的思想把代數(shù)和幾何圖形結合起來,考查了旋轉的性質、正方形的性質、全等三角形的判定及性質等知識點.17、.【分析】根據二次根式有意義的條件:被開方數(shù)大于等于0列出不等式求解.【詳解】根據二次根式被開方數(shù)必須是非負數(shù)的條件,得.【點睛】本題考查二次根式有意義的條件,牢記被開方數(shù)必須是非負數(shù).18、1【分析】根據題意當點C的橫坐標取最小值時,拋物線的頂點與點A重合,進而可得拋物線的對稱軸,則可求出此時點D的最小值,然后根據拋物線的平移可求解.【詳解】解:∵點A,B的坐標分別為(1,4)和(4,4),∴AB=3,由拋物線y=a(x﹣m)2+n的頂點在線段AB上運動,與x軸交于C、D兩點(C在D的左側),可得:當點C的橫坐標取最小值時,拋物線的頂點與點A重合,∴拋物線的對稱軸為:直線,∵點,∴點D的坐標為,∵頂點在線段AB上移動,∴點D的橫坐標的最大值為:5+3=1;故答案為1.【點睛】本題主要考查二次函數(shù)的平移及性質,熟練掌握二次函數(shù)的性質是解題的關鍵.三、解答題(共78分)19、(1)見解析;(2)見解析;(3)見解析.【分析】(1)根據,利用兩角分別相等的兩個三角形相似即可證得結果;(2)利用相似三角形對應邊成比例結合等腰直角三角形的性質可得,,,從而求得結果;(3)根據兩角分別相等的兩個三角形相似,可證得,求得,由可得,從而證得結論.【詳解】(1)∵,,∴又,∴∴又∵,∴(2)∵∴在中,,∴∴,∴(3)如圖,過點作,,交、于點,,∴,,,∵∴,∴,又∵∴,∴,∴,即,∴∵,∴.∴∴.即:.【點睛】本題主要考查了等腰直角三角形的性質,相似三角形的判定和性質,綜合性較強,有一定的難度.20、(1)證明見解析;(2)16.【解析】(1)根據相似三角形的判定即可求出答案.(2)根據△EFB∽△CDA,利用相似三角形的性質即可求出EB的長度.【詳解】(1)∵,∴,∵,∴,∴,∵,∴∽;(2)∵∽,∴,∵,,,∴.【點睛】本題考查相似三角形,解題的關鍵是熟練運用相似三角形的性質與判定.21、(1)見解析;(2)△CPA∽△CAB,此時P(,);△BPA∽△BAC,此時P(,);(3)S(3,-2)是△GBD與△GBC公共的自相似點,見解析【分析】(1)利用:兩邊對應成比例且夾角相等,證明△APC∽△CAB即可;(2)分類討論:△CPA∽△CAB和△BPA∽△BAC,分別求得P點的坐標;(3)先求得點D的坐標,說明點G(5,)、S(3,-2)在直線AC:上,證得△ABC△SGB,再證得△GBS∽△GCB,說明點S是△GBC的自相似點;又證得△DBG△DSB,說明點S是△GBD的自相似點.從而說明S(3,-2)是△GBD與△GBC公共的自相似點.【詳解】(1)如圖,∵A(1,0),B(3,0),C(0,1),P(2,0),∴AP=2-1=1,AC=,AB=3-1=2,∴,,∴=,∵∠PAC=∠CAB,∴△APC∽△CAB,故點P是△ABC的自相似點;(2)點P只能在BC上,①△CPA∽△CAB,如圖,由(1)得:AC,AB,又,∵△CPA∽△CAB,∴,∴,∴,過點P作PD∥y軸交軸于D,∴,,∴,,∴,,P點的坐標為(,)②△BPA∽△BAC,如圖,由前面獲得的數(shù)據:AB,,∵△BPA∽△BAC,∴,∴,∴,過點P作PE∥y軸交軸于E,∴,∴,∴,,∴,P點的坐標為(,);(3)存在.當點G的坐標為(5,)時,△GBD與△GBC公共的自相似點為S(3,).理由如下:如圖:設直線AC的解析式為:,
∴,解得:,∴直線AC的解析式為:,過點D作DE⊥x軸于點E,
∵∠CBO+∠DBE=90,∠EDB+∠DBE=90,∴∠CBO=∠EDB,∴,∴,設BE=a,則DE=3a,∴OE=3-a,∴點D的坐標為(3-a,-3a),∵點D在直線AC上,∴,解得:,∴點D的坐標為(,);如下圖:當點G的坐標為(5,)時,△GBD與△GBC公共的自相似點為S(3,).直線AC的解析式為:,
∵,,∴點G、點S在直線AC上,過點G作GH⊥x軸于點H,∵,∴,由S(3,)、B(3,0)知BS⊥x軸,∴△AED、△ABS、△AHG為等腰直角三角形,∵D(,),S,G(,∴,,B,,,,,,,,在△ABC和△SGB中∵,,∴,∵∴∴△ABC△SGB∴∠SBG=∠BCA,又∠SGB=∠BGC,∴△GBS∽△GCB,∴點S是△GBC的自相似點;在△DBG和△DSB中,∵,,∴,且,∴△DBG△DSB;∴點S是△GBD的自相似點.∴S(3,)是△GBD與△GBC公共的自相似點.【點睛】本題主要考查了相似三角形的判定,涉及的知識有:平面內點的特征、待定系數(shù)法求直線的解析式、等腰直角三角形的判定和性質、勾股定理,讀懂題意,理清“自相似點”的概念是解題的關鍵.22、(1)6;(2)【分析】(1)作高,由圖象得出△ABD的面積,再由BD=2CD,得出△ABC的面積,利用三角形的面積公式求解即可;(2)先求出,,,的值,再利用勾股定理可得AD的值,再利用三角形相似,分類討論,求解即可.【詳解】(1)解:如圖1,過點A作AH⊥BC,垂足為H,則,,由圖象可知.由,可知,.是等邊三角形,可知,,,,得.(2)解:如圖2,作高,則,,由圖象可知.由,可知,.是等邊三角形,可知,,,,得.,,,.由勾股定理可得,.由,可得,,,.當點與點重合時,,.當時,如圖1,,,.當時,如圖4,,,.,,..當時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年流動式空氣質量監(jiān)測車合作協(xié)議書
- 2025年個人門面買賣合同格式版(2篇)
- 2025年個人貨車租賃合同常用版(2篇)
- 2025年九年級英語下學期教學工作總結(二篇)
- 2025年個人貨運汽車租賃合同(4篇)
- 2025年個人雇傭協(xié)議參考范文(三篇)
- 2025年九年級教學管理工作總結樣本(2篇)
- 2013-2022年北京市中考真題物理試題匯編:電功和電功率章節(jié)綜合
- 2025年中介行業(yè)保密協(xié)議(五篇)
- 2025年個人成交租賃合同模板(三篇)
- 2024年度-脛腓骨骨折
- 2024年職業(yè)衛(wèi)生技術人員評價方向考試題庫附答案
- 應用密碼學課件
- 紅樓夢詩詞全集
- 礦井通風安全培訓課件
- 2024年中國國際投資促進中心限責任公司招聘高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 苯胺合成靛紅工藝
- 質量保證發(fā)展史和國外相關標準簡介
- 三年級上冊數(shù)學脫式計算大全600題及答案
- 魯教版(五四制)七年級數(shù)學上冊期末考試卷-附帶答案
- 南京大學儀器分析習題集
評論
0/150
提交評論