版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.2.設集合,,則集合A. B. C. D.3.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.4.已知函數(shù)(),若函數(shù)在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或05.已知向量,,,若,則()A. B. C. D.6.某設備使用年限x(年)與所支出的維修費用y(萬元)的統(tǒng)計數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設備報廢,則該設備的使用年限為()A.8年 B.9年 C.10年 D.11年7.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.8.為虛數(shù)單位,則的虛部為()A. B. C. D.9.已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關系為()A. B.C. D.10.已知函數(shù)的零點為m,若存在實數(shù)n使且,則實數(shù)a的取值范圍是()A. B. C. D.11.《九章算術》是我國古代數(shù)學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機取一點,則此點取自內(nèi)切圓的概率是()A. B. C. D.12.若,則實數(shù)的大小關系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知變量(m>0),且,若恒成立,則m的最大值________.14.已知平面向量,,滿足||=1,||=2,,的夾角等于,且()?()=0,則||的取值范圍是_____.15.已知,,,,則______.16.已知,則=___________,_____________________________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,側(cè)棱底面,,,,是棱的中點.(1)求證:平面;(2)若,點是線段上一點,且,求直線與平面所成角的正弦值.18.(12分)已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.19.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù),).在以為極點,軸正半軸為極軸的極坐標中,曲線:.(1)當時,求與的交點的極坐標;(2)直線與曲線交于,兩點,線段中點為,求的值.20.(12分)已知.(1)若曲線在點處的切線也與曲線相切,求實數(shù)的值;(2)試討論函數(shù)零點的個數(shù).21.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標方程;(2)已知點是曲線上的任意一點,又直線上有兩點和,且,又點的極角為,點的極角為銳角.求:①點的極角;②面積的取值范圍.22.(10分)已知,,分別為內(nèi)角,,的對邊,且.(1)證明:;(2)若的面積,,求角.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【答案解析】
根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關于1,0中心對稱,排除AB,計算f1.5≤【題目詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關于f1.5≤2故選:D.【答案點睛】本題考查了函數(shù)圖像的識別,確定函數(shù)關于1,0中心對稱是解題的關鍵.2.B【答案解析】
先求出集合和它的補集,然后求得集合的解集,最后取它們的交集得出結果.【題目詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【答案點睛】本小題主要考查一元二次不等式的解法,考查對數(shù)不等式的解法,考查集合的補集和交集的運算.對于有兩個根的一元二次不等式的解法是:先將二次項系數(shù)化為正數(shù),且不等號的另一邊化為,然后通過因式分解,求得對應的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.3.B【答案解析】
求得雙曲線的一條漸近線方程,設出的坐標,由題意求得,運用直線的斜率公式可得,,,再由等差數(shù)列中項性質(zhì)和離心率公式,計算可得所求值.【題目詳解】設雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設,,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【答案點睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學生對這些知識的理解掌握水平.4.C【答案解析】
求出函數(shù)的導函數(shù),當時,只需,即,令,利用導數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當時,根據(jù)函數(shù)的單調(diào)性及零點存在性定理可判斷;【題目詳解】解:∵(),∴,∴當時,由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調(diào)遞增.∵,∴;當時,,函數(shù)在上單調(diào)遞減,∵,,函數(shù)在上有且只有一個零點,∴的值是1或0.故選:C【答案點睛】本題考查利用導數(shù)研究函數(shù)的零點問題,零點存在性定理的應用,屬于中檔題.5.A【答案解析】
根據(jù)向量坐標運算求得,由平行關系構造方程可求得結果.【題目詳解】,,解得:故選:【答案點睛】本題考查根據(jù)向量平行關系求解參數(shù)值的問題,涉及到平面向量的坐標運算;關鍵是明確若兩向量平行,則.6.D【答案解析】
根據(jù)樣本中心點在回歸直線上,求出,求解,即可求出答案.【題目詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.【答案點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應用,屬于基礎題.7.A【答案解析】
根據(jù)等比數(shù)列的性質(zhì)可得,通分化簡即可.【題目詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【答案點睛】本題考查了等比數(shù)列的性質(zhì),考查了推理能力與運算能力,屬于基礎題.8.C【答案解析】
利用復數(shù)的運算法則計算即可.【題目詳解】,故虛部為.故選:C.【答案點睛】本題考查復數(shù)的運算以及復數(shù)的概念,注意復數(shù)的虛部為,不是,本題為基礎題,也是易錯題.9.C【答案解析】
可設,根據(jù)在上為偶函數(shù)及便可得到:,可設,,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對數(shù)的運算得到、、的大小關系,從而得到的大小關系.【題目詳解】解:因為,即,又,設,根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C【答案點睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個函數(shù)單調(diào)性的方法和過程:設,通過條件比較與,函數(shù)的單調(diào)性的應用,屬于中檔題.10.D【答案解析】
易知單調(diào)遞增,由可得唯一零點,通過已知可求得,則問題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實數(shù)a的取值范圍.【題目詳解】易知函數(shù)單調(diào)遞增且有惟一的零點為,所以,∴,問題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域為,∴.故選D.【答案點睛】本題考查了函數(shù)的零點問題,考查了方程有解問題,分離參數(shù)法及構造函數(shù)法的應用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.11.C【答案解析】
利用直角三角形三邊與內(nèi)切圓半徑的關系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計算公式,即可求解.【題目詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【答案點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關鍵,著重考查了推理與運算能力.12.A【答案解析】
將化成以為底的對數(shù),即可判斷的大小關系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關系,從而可判斷三者的大小關系.【題目詳解】依題意,由對數(shù)函數(shù)的性質(zhì)可得.又因為,故.故選:A.【答案點睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對數(shù)函數(shù)的性質(zhì),考查了對數(shù)的運算性質(zhì).兩個對數(shù)型的數(shù)字比較大小時,底數(shù)相同,則構造對數(shù)函數(shù),結合對數(shù)的單調(diào)性可判斷大?。蝗粽鏀?shù)相同,則結合對數(shù)函數(shù)的圖像或者換底公式可判斷大?。蝗粽鏀?shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
在不等式兩邊同時取對數(shù),然后構造函數(shù)f(x)=,求函數(shù)的導數(shù),研究函數(shù)的單調(diào)性即可得到結論.【題目詳解】不等式兩邊同時取對數(shù)得,即x2lnx1<x1lnx2,又即成立,設f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數(shù)f(x)在(0,m)上為增函數(shù),函數(shù)的導數(shù),由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數(shù)f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e【答案點睛】本題考查函數(shù)單調(diào)性與導數(shù)之間的應用,根據(jù)條件利用取對數(shù)得到不等式,從而可構造新函數(shù),是解決本題的關鍵14.【答案解析】
計算得到||,||cosα﹣1,解得cosα,根據(jù)三角函數(shù)的有界性計算范圍得到答案.【題目詳解】由()?()=0可得()?||?||cosα﹣1×2cos||?||cosα﹣1,α為與的夾角.再由2?1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案為.【答案點睛】本題考查了向量模的范圍,意在考查學生的計算能力,利用三角函數(shù)的有界性是解題的關鍵.15.【答案解析】
由已知利用同角三角函數(shù)的基本關系式可求得,的值,由兩角差的正弦公式即可計算得的值.【題目詳解】,,,,,,,,.故答案為:【答案點睛】本題主要考查了同角三角函數(shù)的基本關系、兩角差的正弦公式,需熟記公式,屬于基礎題.16.?196?3【答案解析】
由二項式定理及二項式展開式通項得:,令x=1,則1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【題目詳解】由二項式(1?2x)7展開式的通項得,則,令x=1,則,所以a0+a1+…+a7=?3,故答案為:?196,?3.【答案點睛】本題考查二項式定理及其通項,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2)【答案解析】
(1)的中點,連接,,證明四邊形是平行四邊形可得,故而平面;(2)以為原點建立空間坐標系,求出平面的法向量,計算與的夾角的余弦值得出答案.【題目詳解】(1)證明:取的中點,連接,,,分別是,的中點,,,又,,,,四邊形是平行四邊形,,又平面,平面,平面.(2)解:,,又,故,以為原點,以,,為坐標軸建立空間直角坐標系,則,0,,,0,,,2,,,0,,,2,,是的中點,是的三等分點,,1,,,,,,,,,0,,,2,,設平面的法向量為,,,則,即,令可得,,,,,直線與平面所成角的正弦值為.【答案點睛】本題考查了線面平行的判定,空間向量與直線與平面所成角的計算,屬于中檔題.18.(1),;(2)【答案解析】試題分析:(1)利用等差數(shù)列,等比數(shù)列的通項公式先求得公差和公比,即得到結論;(2)利用分組求和法,由等差數(shù)列及等比數(shù)列的前n項和公式即可求得數(shù)列前n項和.試題解析:(Ⅰ)設等差數(shù)列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設等比數(shù)列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵數(shù)列{1n}的前n項和為n(n+1),數(shù)列{2n﹣1}的前n項和為1×=2n﹣1,∴數(shù)列{bn}的前n項和為;考點:1.等差數(shù)列性質(zhì)的綜合應用;2.等比數(shù)列性質(zhì)的綜合應用;1.數(shù)列求和.19.(1),;(2)【答案解析】
(1)依題意可知,直線的極坐標方程為(),再對分三種情況考慮;(2)利用直線參數(shù)方程參數(shù)的幾何意義,求弦長即可得到答案.【題目詳解】(1)依題意可知,直線的極坐標方程為(),當時,聯(lián)立解得交點,當時,經(jīng)檢驗滿足兩方程,(易漏解之處忽略的情況)當時,無交點;綜上,曲線與直線的點極坐標為,,(2)把直線的參數(shù)方程代入曲線,得,可知,,所以.【答案點睛】本題考查直線與曲線交點的極坐標、利用參數(shù)方程參數(shù)的幾何意義求弦長,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力.20.(1)(2)答案不唯一具體見解析【答案解析】
(1)利用導數(shù)的幾何意義,設切點的坐標,用不同的方式求出兩種切線方程,但兩條切線本質(zhì)為同一條,從而得到方程組,再構造函數(shù)研究其最大值,進而求得;(2)對函數(shù)進行求導后得,對分三種情況進行一級討論,即,,,結合函數(shù)圖象的單調(diào)性及零點存在定理,可得函數(shù)零點情況.【題目詳解】解:(1)曲線在點處的切線方程為,即.令切線與曲線相切于點,則切線方程為,∴,∴,令,則,記,于是,在上單調(diào)遞增,在上單調(diào)遞減,∴,于是,.(2),①當時,恒成立,在上單調(diào)遞增,且,∴函數(shù)在上有且僅有一個零點;②當時,在R上沒有零點;③當時,令,則,即函數(shù)的增區(qū)間是,同理,減區(qū)間是,∴.ⅰ)若,則,在上沒有零點;ⅱ)若,則有且僅有一個零點;ⅲ)若,則.,令,則,∴當時,單調(diào)遞增,.∴又∵,∴在R上恰有兩個零點,綜上所述,當時,函數(shù)沒有零點;當或時,函數(shù)恰有一個零點;當時,恰有兩個零點.【答案點睛】本題考查導數(shù)的幾何意義、切線方程、零點等知識,求解切線有關問題時,一定要明確切點坐標.以導數(shù)為工具,研究函數(shù)的圖象特征及性質(zhì),從而得到函數(shù)的零點個數(shù),此時如果用到零點存在定理,必需說明在區(qū)間內(nèi)單調(diào)且找到兩個端點值的函數(shù)值相乘小于0,才算完整的解法.21.(1)曲線為圓心在原點,半徑為2的圓.的極坐標方程為(2)①②【答案解析】
(1)求得曲線伸縮變換后所得的參數(shù)方程,消參后求得的普通方程,判斷出對應的曲線,并將的普通方程轉(zhuǎn)化為極坐標方程.(2)①將的極角代入直線的極坐標方程,由此求得點的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進而求得,從而求得點的極角.②解法一:利用曲線的參數(shù)方程,求得曲線上的點到直線的距離的表達式,結合三角函數(shù)的知識求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據(jù)曲線表示的曲線,利用圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 政治-貴州省六校聯(lián)盟2024-2025學年高三上學期12月聯(lián)考(三)試題和答案
- 保潔流程優(yōu)化與學校品牌形象塑造
- 直播策劃學習的核心原則
- 管理文件的QA工作匯報
- 2025年寶雞貨運資格證考試答案
- 創(chuàng)新型的學校綜合運動中心規(guī)劃設計
- 企業(yè)的研發(fā)中心現(xiàn)代簡約裝修與工作效率提升策略
- 2025年東營貨運模擬考試
- 從地球看星空天文學觀測技術的發(fā)展與挑戰(zhàn)
- 2025年西藏貨運資格證考試題
- 2023年復旦大學軍事理論題庫
- GB/T 7549-2008球籠式同步萬向聯(lián)軸器
- GB/T 35658-2017道路運輸車輛衛(wèi)星定位系統(tǒng)平臺技術要求
- GB/T 34898-2017微機電系統(tǒng)(MEMS)技術MEMS諧振敏感元件非線性振動測試方法
- 第6章 特征的提取與選擇
- 新版2023設計收費標準
- 企業(yè)文化建設三年規(guī)劃(最終稿)
- 公共部門決策的理論與方法第1-8章課件
- 茶文化知識-競賽課件
- 二下識字2《中國傳統(tǒng)節(jié)日》評課稿
- 激光原理與激光技術習題全解北工大
評論
0/150
提交評論