版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
11.Faraday’sLawofElectromagneticInductionReview22.Maxwell’sEquations3.ElectromagneticBoundaryConditionsTheintegralformThedifferentialform
SignificanceFaraday’slaw(電磁感應定律)Ampere’scircuitallaw(全電流定律)Gauss’slaw(高斯定理)Noisolatedmagneticcharge(磁通連續(xù)性原理)3MaintopicTime-VaryingFieldsandMaxwell’sEquations1.PotentialFunctions2.WaveEquationsandTheirSolutions3.Time-HarmonicFields4Thedifferentialform
解方程:1)直接求解2)尋找電場和磁場分別滿足的方程(去耦)3)位函數(shù)的方法1.PotentialFunctions5
Supposethemediumislinear,homogeneous,andisotropic,fromMaxwell’sequationwefindWehave6ThesamewayWehave7
Therelationshipbetweenthefieldintensitiesandthesourcesisquite
complicated(復雜).Tosimplifytheprocess,itwillbehelpfultosolvethetime-varyingelectromagneticfieldsbyintroducingtwo
auxiliary
functions:the
scalar
andthe
vector
potentials.whereA
iscalledthe
vectorpotential.SubstitutingtheaboveequationintogivesDueto,hence
B
canbeexpressedintermsofthecurlofavectorfield
A,asgivenbyWehave8ThusitcanbeexpressedintermsofthegradientofascalarV
,sothatwhereViscalledthe
scalarpotential,andwehave
Thevectorpotential
A
andthescalarpotential
V
arefunctionsof
time
and
space.
Iftheyare
independentoftime,thentheresultsarethesameasthatofthe
static
fields.Therefore,thevectorpotential
A
isalsocalledthe
vectormagneticpotential
(矢量磁位)
andthescalarpotential
V
isalsocalledthe
scalarelectricpotential(標量電位).
9
Inordertoderivetherelationshipbetweenthepotentialsandthesources,fromthedefinitionofthepotentialsandMaxwell’sequationsweobtainUsing,theaboveequationsbecome10
Thecurlofthevectorfield
A
isgivenas,butthedivergencemustbespecified.Thentheabovetwoequationsbecome
Lorentzcondition(洛倫茲條件)
Afterthedivergenceofthevectorpotential
A
isgivenbytheLorentzcondition,theequationsaresimplified.Theoriginalequationsaretwo
coupled
equations,whilenewequationsare
decoupled.Inprinciple,thedivergencecanbetakenarbitrarily,buttosimplifytheapplicationoftheequations,wecanseethatiflet
Thevectorpotential
A
onlydependsonthe
current
J,whilethescalarpotential
V
isrelatedtothe
chargedensity
only.11
Ifthecurrentandthechargeareknown,thenthevectorpotential
A
andthescalarpotential
V
canbedetermined.After
A
and
V
arefound,theelectricandthemagneticfieldscanbeobtained.
TheoriginalEquationsaretwovectorequationswithcomplicatedstructure,andinthree-dimensionalspace,sixcoordinatecomponentsneedtobesolved.
Newpotentialequationsareavectorequationandascalarequation,respectively.
Consequently,thesolutionofMaxwell’sequationsisrelatedtothatoftheequationsforthe
potentialfunctions,andthesolutionis
simplified.
Inthree-dimensionalspace,onlyfourcoordinatecomponentsneedtobefound.12Inparticular,in
rectangular
coordinatesystemthevectorequationcanberesolvedintothreescalar
equations.132.WaveEquationsandTheirSolutionsItmeansthatonecansolvethenon-homogeneouswaveequationsforgivenchargeandcurrentdistributionsandJ.WithAandV
determined,EandBcanbefoundfrom14xPzyrO直接求解方程仍需要較多的數(shù)學知識,這里根據(jù)靜態(tài)場的結果,采用類比的方法,推出其解。1)點電荷的場2)疊加原理PzyrdV'OV'r'r-r'S'15
Herewefindthesolutionbyusingan
analogousmethod
basedontheresultsof
static
fields.
Ifthesourceisatime-varyingpointchargeplacedat
theorigin,thedistributionofthefieldshouldbeafunctionofthevariableR
only,andindependentoftheangles
and
.
Thescalarpotentialcausedbya
pointcharge
isobtainedfirst,thenuse
superpositionprinciple
toobtainthesolutionofthescalarpotentialduetoa
distribution
oftime-varyingcharge.whereIntheopenspace
excludingtheorigin,thescalarpotentialfunctionsatisfiesthefollowingequation16《數(shù)學物理方法》梁昆淼第三版P170-178一維波動方程的解達朗貝爾公式
定解問題弦振動方程、傳輸線方程通解:(a)作變量代換:(b)根據(jù)復合函數(shù)求導:(c)通解:17(d)通解的物理意義:波形波形f(x)以速度a向右傳播的行波波形f(x)以速度a向左傳播的行波行波Travelingwave波的入射、反射與透射在無限大均勻媒質中沒有反射波,即f1=0。1819
Theaboveequationisthe
homogeneous
waveequationforthefunction(VR),andthe
generalsolution
is
Wewillknowthatthe
secondterm
iscontrarytothephysicalsituation(違背客觀事實),anditshouldbe
excluded.Therefore,wefindthescalarelectricpotentialas
TheelectricpotentialproducedbythestaticelementalchargeattheoriginisComparingtheabovetwoequations,weknow20Hence,wefindtheelectricpotentialproducedbythetime-varyingelementalchargeattheoriginaswhere
R
isthedistancetothefieldpointfromthecharge
dV.
Fromtheaboveresult,theelectricpotentialproducedbythe
volumecharge
in
V
canbeobtainedasR'RzyxV(R,t)V'dV'R'-RO21
Tofindthevectorpotentialfunction
A,theaboveequationcanbeexpandedin
rectangular
coordinatesystem,withallcoordinatecomponentssatisfyingthe
same
inhomogeneouswaveequation,i.e.
Apparently,foreachcomponentwecanfindasolution
similar
tothatof
scalar
potentialequation.
Incorporating
thethreecomponentsgivesthesolutionofthevectorpotential
A
as22
Bothequationsshowthatthesolutionofthescalarorthevectorpotentialatthemoment
t
isrelatedtothesourcedistributionatthe
moment
.
Itmeansthatthefieldproducedbythesourceat
R
needsa
certaintime
toreach
R,andthistimedifferenceis.
Inotherwords,thefieldat
t
doesnotdependonthesourceatthesamemoment,butonthesourceat
anearliertime.
Thequantityisthe
distance
betweenthesourcepointandthefieldpoint,and
u
standsforthepropagationvelocity
oftheelectromagneticwave.23
Thechangewithrespect
totime
inhescalarelectricpotential
V
andthevectormagneticpotential
A
isalways
lagging
behindthesources.Hencethefunctions
V
and
A
arecalledthe
retardedpotentials(滯后位).
Sincethetimefactorimpliesthattheevolutionofthefieldprecedesthatofthesource,itviolates
causality,andmustbeabandoned(舍棄).
Thetimefactorcanberewrittenas
Forapointchargeplaced
inopenfreespace(自由空間)thisreflectivewavecannotexist.
Hence,thefunctioncanbeconsideredasawavetravelingtowardtheoriginas
areflectedwave(反射波)fromadistantlocation.24
Fromwecanseethatthepropagationvelocityofelectromagneticwaveisrelatedtothe
properties
ofthemedium.Invacuum,whichisthepropagation
velocityoflight(光速)
invacuum,alsocalledthespeedoflight,usuallydenotedas
c.
Itisworthnotingthatthefieldatapointawayfromthesourcemaystillbepresentatamoment
after
thesourceceasestoexist.
Energy
released
byasourcetravelsawayfromthesourceandcontinuoustopropagateevenafterthesourceis
takenaway.Thisphenomenonisaconsequenceof
electromagneticradiation(電磁輻射).
25
Radiation
isassociatedwitha
time-varyings(時變)
electromagneticfieldwhile
static(靜)fieldmustbetiedtoa
source,andthestaticfieldiscalledthe
bound
field(束縛場).
Thetransitionfromrear-fieldtofar-fielddependsnotonlyonthe
distance(距離)butalsothe
timerate
ofchange(時間變化率)
ofthesource.
Atapoint
close
toatime-varyingchargeorcurrent,thefieldvariesalmostinsynchronism(同步)withthesource.Thefieldinthisregioniscalledthe
nearfield,whichis
quasi-static(準靜態(tài))
innature.
Atapoint
veryfaraway
fromthesource,the
delayintheactionofthefieldwithrespecttothesourcewillbecomehighlynoticeable.Thefieldinthisregionisreferredtoasthe
farfield,anditiscalledradiationfield(輻射場).
Atransmissionantennaneedstobeexcitedbya
highfrequency(高頻)
currentinordertoradiateefficiently,whilethe
50Hz
powerlinecurrenthas
little
radiationeffect.
264.PotentialFunctions5.WaveEquationsandTheirSolutionsReview27homeworkThankyou!Bye-bye!P.7-13;7-14;28Maxwell’sequationsandalltheequationsderivedfromthemsofarinthischapterholdforelectromagneticquantitieswithanarbitrarytime-dependence(時間任意相關).Theactualtypeoftimefunctionsthatthefieldquantitiesassumedependson(取決于)thesource(源)functions
andJ.Inengineering,oneofthe
mostimportant
casesoftime-varyingelectromagneticfieldsisthe
time-harmonic(sinusoidal)field(時諧場、正弦場).Inthistypeoffield,the
excitation
sourcevaries
sinusoidally
intimewith
a
singlefrequency(單一頻率).In
alinearsystem(線性系統(tǒng)),asinusoidallyvarying
source
generates
fields
thatalsovarysinusoidallyintimeatallpointsinthesystem(正弦變化的源產生正弦變化的場).1)whatisTime-HarmonicFields3.Time-HarmonicFields292)討論時諧場(正弦信號)的原因Whenfieldsareexaminedinthismanner,thereisnolossingeneralityas(a)Theyareeasytogenerate(b)anytime-varyingperiodicfunctioncanberepresentedbyaFourierseriesintermsofsinusoidalfunctions(c)theprincipleofsuperpositioncanbeappliedunderlinearconditions.Inotherwords,wecanobtainthecompleteresponseoftimevaryingperiodicfieldsbyusinglinearcombinationsofmonochromaticresponses(a)正弦信號容易產生,50Hz交流電,通信的載波都是正弦信號(b)從信號分析的角度來看,正弦信號是一種簡單基本的信號。正弦信號進行各種運算(加減微分積分后仍為同頻率正弦信號)(c)傅立葉分析:任意周期信號分解為不同頻率的正弦之和(d)線性系統(tǒng)的疊加原理303.1
電路中的相量表達式Incircuittheory,youhavealreadyusedthephasornotation(相量)torepresentvoltagesandcurrentsvaryingsinusoidallyintime(1)Instantaneous(time-dependent)expressionofasinusoidalscalarquantity(瞬時值)三角函數(shù)表達式3Parameters:
angularfrequency:
amplitude:Im
phase:(2)
復數(shù)的表示xjyP(x,y)復平面上一點P31(3)正弦表達式和相量表達式的對應關系相量的模正弦量的幅值初位相復角頻率是已知?頻率相量乘以ejt,再取實部32EXAMPLE7-6P337-338333.2
Time-harmonicElectromagneticsFieldvectorsthatvarywithspacecoordinatesandaresinusoidalfunctionsoftimecansimilarlyberepresentedbyvectorphasors(矢量相量)thatdependonspacecoordinatesbutnotontime.Asanexample,wecanwriteatime-harmonicE
fieldreferringtocostaswhereE(x,y,z)isavectorphasor(矢量相量)thatcontainsinformationondirection(方向),magnitude(振幅),andphase(相位).Phasorsare,ingeneral,complexquantities.weseethat,ifE(x,y,z,t)istoberepresentedbythevectorphasorE(x,y,z),thenE(x,y,z,t)/tandE(x,y,z,t)dtwouldberepresentedby,respectively,vectorphasorsjE(x,y,z)
andE(x,y,z)/j.Higher-orderdifferentiationsandintegrationswithrespecttowouldberepresented,respectively,bymultiplicationsanddivisionsofthephasorE(x,y,z)byhigherpowersofj.3435
已知正弦電磁場的場與源的頻率相同,因此可用復矢量形式表示麥克斯韋方程??紤]到正弦時間函數(shù)的時間導數(shù)為或因此,麥克斯韋第一方程可表示為
上式對于任何時刻均成立,實部符號可以消去,即36瞬時值由相量值代替時間求導由jω代替Wenowwritetime-harmonicMaxwell’sequations(時諧麥克斯韋方程組)intermsofvectorfieldphasors(E,H)andsourcephasors(,J)inasimple(linear,isotropic,andhomogenous)mediumasfollows.37Thetime-harmonicwaveequations(時諧波動方程)forEandHbecome,respectively,Thetime-harmonicwaveequationsforscalarpotentialVandvectorpotentialAbecome,respectively,Letiscalledthewavenumber.38Then
Considerthetimedelayfactor,forasinusoidalfunctionitleadstoaphasedelayof.
Weobtain39ThecomplexLorentzconditionis
Thecomplexelectricandmagneticfieldscanbeexpressedintermsofthecomplexpotentialsas
403.3
source-free(無源)fieldsinsimplemediaInasimple,nonconducting(非導電)source-freemediumcharacterizedby=0,J=0,=0,thetime-harmonicMaxwell’sequationsbecome
41whicharehomogeneousvectorHelmholtz’sequations(齊次矢量亥姆霍茲方程).andwaveequationsforAandV
becomeThetime-harmonicwaveequationsforEandHbecome,respectively,Letiscalledthewavenumber.42Ifthesimplemediumisconducting(0)(導電介質),acurrentJ=Ewillflow,andtheequationshouldbechangedtowithTheotherthreeequationsinMaxwell’sequationareunchanged.Hence,allthepreviousequationsfornonconducting(非導電)mediawillapplytoconductingmediaifisreplacedbythecomplexpermittivity
c.Meanwhile,thereal(實數(shù))wavenumberkinthehelmholtz’sequationsshouldbechangedtoacomplex(復數(shù))wavenumber:43Theratio’’/’
iscalledalosstangent(損耗正切)becauseitisameasureofthepowerlossinthemedium:Thequantityc
maybecalledthelossangle(損耗角).Amediumissaidtobeagoodconductor(良導體)if>>,andagoodinsulator(良絕緣體)if<<.Thus,amaterialmaybeagoodconductoratlowfrequencies(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理優(yōu)服培訓課件
- 幼兒聽說游戲活動教案
- 幼兒園教師培訓宣傳
- 民營醫(yī)院市場營銷業(yè)務培訓
- 15.2 電流和電路(7大題型)(含答案解析)
- 四川省遂寧市遂寧中學高新學校2024-2025學年上學期高一10月月考語文試卷(含答案)
- 廣東省江門市蓬江區(qū)江門二中2023-2024學年九年級上學期期中物理試卷(含解析)
- 2024年初中七年級英語上冊單元寫作范文(新人教版)
- 工程力學課后單選題100道及答案解析
- 人教版八年級歷史上冊
- 【公開課】被動運輸課件高一上學期生物人教版必修1
- 冷拌瀝青混合料路面面層質量檢驗標準
- 藝術:讓人成為人
- 小學道德與法治-《平安出行》教學課件設計
- 客戶投訴案例及處理技巧課件
- 五年級上冊語文基于標準的教學設計第五單元
- 初中體育 田徑作業(yè)的有效設計
- 慢性阻塞性肺病疾病護理計劃單
- 顳下頜關節(jié)盤復位固定術后護理查房
- 記敘文閱讀常見題型及答題技巧
- 歷年北京市中小學生天文觀測競賽-天文知識-小學組
評論
0/150
提交評論