光纖通信-Optical-Sources-and-Amplifiers課件_第1頁
光纖通信-Optical-Sources-and-Amplifiers課件_第2頁
光纖通信-Optical-Sources-and-Amplifiers課件_第3頁
光纖通信-Optical-Sources-and-Amplifiers課件_第4頁
光纖通信-Optical-Sources-and-Amplifiers課件_第5頁
已閱讀5頁,還剩171頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Chapter6OpticalSources

andAmplifiersChapter61Chapter6OpticalSources

andAmplifiers6.1Light-emittingDiodes6.2Light-emittingDiodeoperatingCharacteristic6.3LaserPrinciples6.4LaserDiodes6.5Laser-diodeoperatingCharacteristic6.7OpticalAmplifiers6.8FiberLasers6.9Vertical-CavitySurface-emittingLaserDiodesChapter6OpticalSources

2LightsourceLight-emittingdiodeLaserdiodeLightsourceLight-emittingdio3ModulationLaser

DirectModulationofLaserDiodeBias+DATAIssues--ComplexDynamicsYield

ExternalModulationofLaserDiodeLaserModulatorBiasBias+DATAIssues--AdditionalComponentModulationLaserDirectModul4ALight-emittingDiodesisapn-junctionsemiconductorthatemitslightwhenforwardbiased.

Circuit6.1Light-emittingDiodesALight-emittingDiodesisap5Intheupper-energyband,calledtheconductionband,electronsnotboundtoindividualatomsarefreetomove.Inthelowerband,thevalenceband,unboundholesarefreetomove.Holeshaveapositivecharge.6.1Light-emittingDiodesTwoallowedbandsofenergiesareseparatedbyaforbiddenregion(abandgap)whosewidthhasenergyWg.Intheupper-energyband,call66.1Light-emittingDiodesInaword,radiationfromanLEDiscausedbytherecombinationofholesandelectronsthatareinjectedintothejunctionbyaforwardbiasvoltage.PNpn-junctionflash366.1Light-emittingDiodesIna76.2Light-emittingDiode

operatingcharacteristicmA0501001507654321mWTheopticpowergeneratedbyanLEDislinearlyproportionaltotheforwarddrivingcurrent.6.2Light-emittingDiode

oper8DigitalmodulationcurrenttimeOutputpowerinputcurrenttimeOpticalpowerThediodeismodulatedbyacurrentsource,whichsimplyturnstheLEDONorOFF.DigitalmodulationcurrenttimeO9AnalogmodulationAnalogmodulationrequiresadcbiastokeepthetotalcurrentintheforwarddirectionatalltimes.OpticalpowertimetimecurrentAnalogmodulationAnalogmodula10Asweknow,theopticspectrumofthesourcedirectlyinfluencesmaterialandwaveguidedispersion.Pulsespreadingduetothesecausesincreaseslinearlywithsourcespectralwidth.LEDsoperatingintheregion0.8-0.9mgenerallyhaswidthof20-50nm,andLEDsemittinginthelonger-wavelengthregionhavewidthsof50-100nm.6.2Light-emittingDiode

operatingcharacteristic6.2Light-emittingDiode

oper11Couplingefficiencydependsheavilyontheradiationpatternofaemitter.

-90°090°BEAMANGLEBEAMINTENSITYθsurface-emittingLEDCouplingefficiencydependshe12Raysincidentonafiber,butoutsideitsacceptanceangle,willnotbecoupled.TheacceptanceangleforafiberhavingNA=0.24isonly14°,soalargeamountofthepowergeneratedbyasurfaceemitterwillberejected.-90°090°BEAMANGLEBEAMINTENSITYθsurface-emittingLEDRaysincidentonafiber,but13Edgeemittersconcentratetheirradiationsomewhatmorethansurfacedevices,providingimprovedcouplingefficiency.-90°-45°0°45°90°120°30°BEAMANGLEBEAMINTENSITYPARALLELPLANEPERPENDICULARPLANEθedge-emittingLEDFlash38Edgeemittersconcentratethei146.3LaserPrinciplesHereisalistofsomecharacteristicsthatalllaserspossessandthatareimportantintheirutilization:

Pumpingthreshold

Thepowerinputtoalasermustbeaboveacertainthresholdlevelbeforethedevicewillemit.

Outputspectrum

Thelaseroutputpowerisnotatasinglefrequencybutisspreadoverarangeoffrequencies.

Radiationpattern

Therangeofanglesoverwhichalaseremitslightdependsonthesizeoftheemittingareaandonthemodesofoscillationwithinthelaser.6.3LaserPrinciplesHereisa15

thesemiconductorlaserdiodethegaslaserthebulkNd:YAGthefiberlasercommonkindsoflaserAlaserisahigh-frequencygenerator,oroscillator.Foroscillationstooccur,asystemneedsamplification,feedback,monkindsoflaserAlaser16Lightamplificationbystimulatedemissionofradiation

laserLightamplificationbylaser17stimulatedemissionenergyEnergyissuppliedfromoutsideandatomentersexcitedstate.E1groundstateE2excitedstatestimulatedemissionenergyEnerg18stimulatedemissionE2E1hArrivingphotonPhotonarrivesandinteractswithexcitedatom.stimulatedemissionE2E1hArriv19stimulatedemissionE2E1hArrivingphotonAtomemitsadditionalphotonandreturnstothegroundstate.hhstimulatedemissionE2E1hArriv20stimulatedemissionE2E1hArrivingphotonWhenanewphotonisemittedithasidenticalwavelength,phaseanddirectioncharacteristicsastheexcitingphoton.hhstimulatedemissionE2E1hArriv21stimulatedemissionPopulationinversionThenumberofatomsintheupperlevelexceedsthoseinthelowerlevel.stimulatedemissionPopulation22PopulationinversionThenumberofphotonswillincreaseastheypropagate.Morephotonwillencounterupperlevelatoms(causinggenerationofadditional)thanwillmeetlowerlevelatoms(whichwouldabsorbthem).Amediumwithpopulationinversionhasgainandbehavesasanamplifier.PopulationinversionThenumber23energylasingM1M2mirrorPartialmirrorlaserenergylasingM1M2mirrorPartial24mirrorPartialmirroroscillationmirrorPartialmirroroscillatio25LaseroutputLaseroutput266.4LaserDiodesMETALLIZATIONn-AlGaAs,Wg=1.8eVCONFINEMENTn-AlGaAs,Wg=1.55eVACTIVELAYERn-AlGaAs,Wg=1.55eVCONFINEMENTGaAsSUBSTRATEP-GaAs,CONTACTSiO2,INSULATIONMETALLIZATIONSTRIPECONTACT0.1-0.3μm-1μm-1μm-1μmThestructureofan

AlGaAslaserdiode6.4LaserDiodesMETALLIZATIONn27powerConfinementLayerConfinementLayerActiveLayerRefractiveIndex6.4LaserDiodespowerConfinementLayerConfinem28Manylaserdiodesareedgeemitters.Underforwardbias,chargesareinjectedintotheactivelayer,causingthespontaneousemissionofphotons.Someoftheinjectedchargesarestimulatedtoemitbyotherphotons.Ifthecurrentdensityissufficientlyhigh,thenalargenumberofinjectedchargesareavailableforstimulatedrecombination.Theopticgainwillbelarge.Thethresholdcurrentisreachedwhenthegainislargeenoughtooffsetthediodelosses.Atthispoint,laseroscillationstart.6.4LaserDiodesManylaserdiodesareedgeemi29GAINOFTHEAMPLIFYINGMEDIUM819820821WAVELENGTH(nm)OutputpowerofalaserdiodeDiodesradiatinga

spectrum

containingnumerous

longitudinalmodes.GAINOFTHEAMPLIFYINGMEDIUM8306.5Laser-diodesoperatingcharacteristicoperatingcharacteristicoutputpowerlinewidthtemperaturesensitiveoperatingcharacteristic6.5Laser-diodesoperatingcha31(1)OutputopticpowerOPTICALPOWER(mW)CURRENT(mA)050ITH10015054321Outputopticpowerisplottedagainstforwardinputcurrent.(1)OutputopticpowerOPTICA32Digitalmodulationof

alaserdiodeTIMEiTIMEIdcCURRENTOPTICALPOWERisidcDigitalmodulationof

alaser33AnalogmodulationofalaserdiodeTIMEIdcCURRENTOPTICALPOWERisidcITHTIMEisAnalogmodulationofalaserd346.5Laser-diodesoperatingcharacteristicoperatingcharacteristicoutputpowerlinewidthtemperaturesensitiveoperatingcharacteristic6.5Laser-diodesoperatingcha35(2)temperaturesensitiveCURRENT(mA)OutputPower(mW)20°40°60°0LaserdiodesaremuchmoretemperaturesensitivethanareLEDsAsthetemperatureincreases,thediode’sgaindecreases,andsomorecurrentisrequiredbeforeoscillationcanbegin-----thethresholdcurrentbecomesgreater.(2)temperaturesensitiveCUR36(2)temperaturesensitiveCURRENT(mA)OutputPower(mW)20°40°60°0Ataconstantcurrent,theoutputpowerofalaserdiodewilldiminishifthetemperaturerisesTherearetwotechniquesforovercomingthisproblem:thermoelectricallycoolingthediode,andchangingthebiascurrenttocompensateforchangedthreshold.(2)temperaturesensitiveCUR37(2)temperaturesensitiveThelaseremissionwavelengthalsodependsuponthetemperature.Thiseffectarisesfromthedependenceofthematerial’srefractiveindexontemperature.(2)temperaturesensitiveThel386.5Laser-diodesoperatingcharacteristicoperatingcharacteristicoutputpowerlinewidthtemperaturesensitiveoperatingcharacteristic6.5Laser-diodesoperatingcha39(3)linewidth-2.5-1.5-2.5WAVELENGTH(nm)2.01.51.00.50.0INTENSITYLaserdiodestypicallypossesslinewidthsof1-5nm,considerablysmallerthanthooutputspectraofLEDs.Whenthedrivecurrentisjustabitabovethethreshold,laserdiodesproducemultimodespectra(3)linewidth-2.5-1.5-040(3)linewidth-2.5-1.5-2.5WAVELENGTH(nm)2.01.51.00.50.0INTENSITYWAVELENGTH(nm)2.01.51.00.50.0INTENSITY-2.5-1.5-2.5Asthecurrentincreases,thetotallinewidthdecreases,andthenumberoflongitudinalmodesdiminishes.Atasufficientlyhighcurrent,thespectrumwillcontainjustonemode.Itiscalled

single-longitudinal-modelaser.(3)linewidth-2.5-1.5-0416.6Narrow-spectral-widthandTunablelaserdiodes6.6.1Distributed-feedbacklaserDiode(DFB)TheDFBlaserdiodeisasingle-longitudinal-modelaserdiode.

PnMETALIZEDLAYERGRATINGACTIVELAYERCLEAVEDFACETOutput6.6Narrow-spectral-widthand426.6.1Distributed-feedbacklaserDiode(DFB)OperatingwavelengthisdeterminedfromBragg’slaw6.6.1Distributed-feedbacklas43DFBlasershaveanumberofuniquepropertiesarisingfromthegratingstructure.Inadditiontotheirnarrowlinewidths(typically0.1-0.2nm),whichmakethemattractiveforlonghigh-bandwidthtransmissionpaths,theyarelesstemperaturedependentthanaremostconventionallaserdiodes.6.6.1Distributed-feedbacklaserDiode(DFB)DFBlasershaveanumberofun44pngain

phase

BraggIGIPIB6.6.2TunableLaserDiodesThegaincurrentIGdeterminestheamplificationintheactiveregionandthelevelofoutputlaserpower.pngainphase45pngain

phase

BraggIGIPIB6.6.2TunableLaserDiodesThephasecurrentIPcontrolsthefeedbackfromtheBraggreflectionregion.pngainphase46pngain

phase

BraggIGIPIB6.6.2TunableLaserDiodesThecurrentIBcontrolstheBraggwavelengthbychangingthetemperatureintheBraggregion.pngainphase476.7OpticalAmplifiersOpticalamplifierswillnotsolvetheproblemofreconstructingsignalwaveshapes,buttheywillallowextensionofpower-limitedlinks.Inotherwords,bandwidth-limitedsystemwillnotbehelped,butpower-limitedoneswill.6.7OpticalAmplifiersOptical486.7OpticalAmplifiersSemiconductorOpticalAmplifier(SOA)Erbium-DopedFiberAmplifier(EDFA)Erbium-DopedWaveguideAmplifier(EDWA)FiberRamanAmplifier(FRA)6.7OpticalAmplifiersSemicond496.7.1SemiconductorOpticalAmplifiers(SOA)MirrorInputOutputMirrorCurrentARCoatInputOutputARCoatFabry-PerotamplifierTraveling-waveamplifier6.7.1SemiconductorOpticalAm506.7.1SemiconductorOpticalAmplifiers(SOA)R1R2ISOASOAcanbeconstructedbyusingstimulatedemission,similartolaser.Achievingenoughgainanddoingsowithoutaddingtoomuchnoisehasbeenaproblem.ThegainofSOAispolarizationdependent.6.7.1SemiconductorOpticalAm51SOAProductSOAProduct52Inputsignal1530nm-1570nmAmplifiedoutputsignalPowerlaser(Pump)980nmor1480nmFibercontainingerbiumdopant6.7.2Erbium-DopedFiberOpticalAmplifier(EDFA)HighgainWavelengthofamplificationLargebandwidthLownoiseInputsignalAmplifiedoutputs53Energystatesandtransitionsenergy1550nmemissionW2980nm1480nmW31550nmW1Erbium-dopedglassfiberEnergystatesandtransitionse546.7.2Erbium-DopedFiberOpticalAmplifier(EDFA)INPUTSIGNAL1550nmWDMWDM980nm980nmPUMP-LASERDIODESINPUTSIGNAL1550nmISOLATORISOLATORERBIUM-DOPEDFIBERLOOPThepumpinglightisabsorbedbytheerbiumatoms,raisingthemtoexcitedstatesandcausingpopulationinversion.6.7.2Erbium-DopedFiberOptic556.7.2Erbium-DopedFiberOpticalAmplifier(EDFA)INPUTSIGNAL1550nmWDMWDM980nm980nmPUMP-LASERDIODESINPUTSIGNAL1550nmISOLATORISOLATORERBIUM-DOPEDFIBERLOOPTheexcitederbiumatomsarethenstimulatedtoemitbythelongerwavelength1550nmphotons,amplifyingthesignal.6.7.2Erbium-DopedFiberOptic566.7.2Erbium-DopedFiberOpticalAmplifier(EDFA)INPUTSIGNAL1550nmWDMWDM980nm980nmPUMP-LASERDIODESINPUTSIGNAL1550nmISOLATORISOLATORERBIUM-DOPEDFIBERLOOPThesignalbeamandthepumpingbeamfromthelefttraveltogetherdownthefiber.Thesignalbeamcontinuallyincreasesinstrengthwhiledepletingthepumppower.6.7.2Erbium-DopedFiberOptic576.7.2Erbium-DopedFiberOpticalAmplifier(EDFA)INPUTSIGNAL1550nmWDMWDM980nm980nmPUMP-LASERDIODESINPUTSIGNAL1550nmISOLATORISOLATORERBIUM-DOPEDFIBERLOOPTheisolatorsarerequiredtoattenuatereflectedwaves(feedback),whichwouldbeamplifiedandcouldcauselaser-typeoscillation.6.7.2Erbium-DopedFiberOptic58EDFAoperatingcharacteristicoperatingcharacteristicoperatingbandwidthgainsaturationErbium-dopedfiberlengthoperatingcharacteristicEDFAoperatingcharacteristico59(1)operatingbandwidth15391569Operatingbandwidthofmorethan30nmareachievable,soanumberofwavelength-division-multiplexingchannelscanbeamplifiedsimutaneously.(1)operatingbandwidth153915660Dual-bandamplifierL-bandEBFADual-bandamplifierL-bandEBFA61EDFAoperatingcharacteristicoperatingcharacteristicoperatingbandwidthgainsaturationErbium-dopedfiberlengthoperatingcharacteristicEDFAoperatingcharacteristico62(2)Erbium-dopedfiberlengthTheErbium-dopedfiberlengthsaretypicallyafewtensofmeters.Theoptimumlengthdependsontheamountofpumppoweravailable.(2)Erbium-dopedfiberlengthT63(2)Erbium-dopedfiberlengthThepumppowerdecreasesasittravelsdownthroughthefiber,andeventuallyitbecomessoweakthatthegainreducedtozero,andthepumpedfiberbecomesabsorbingratherthanamplifying.(2)Erbium-dopedfiberlengthT64EDFAoperatingcharacteristicoperatingcharacteristicoperatingbandwidthgainsaturationErbium-dopedfiberlengthoperatingcharacteristicEDFAoperatingcharacteristico65(3)gainsaturation3dBPout,satgainPin(dBm)saturationSaturationisthedecreaseingainthatoccurswhentheamplifiedpowerreacheshighlevels.(3)gainsaturation3dBPout,sat666.7.3Erbium-DopedWaveguideOpticalAmplifierWDMEDWLDINPUTSIGNALOUTPUTSIGNALThewaveguideisdopedwitherbiumatoms.Integrationissimpler,moreeconomical,reducessize,reducesinsertionlosses.6.7.3Erbium-DopedWaveguideO676.7.4RamanAmplifierTheEDFAprovidessignificantamplificationintheC-band.AmplifiersusingstimulatedRamanscatteringhavebeendevelopedforapplicationsinotherbands.Development

6.7.4RamanAmplifierTheEDFA686.7.4RamanAmplifierfiber(a)Nopumppower(dB)1550nmpower(dB)1550nm1450nmfiber(b)Withpump1550nm1450nm1550nmSRScausesanewsignal(astokeswave)tobegeneratedinthesamedirectionasthepumpwavedown-shiftedinfrequencyby13.2THzprovidedthatthepumpsignalisofsufficientstrength.6.7.4RamanAmplifierfiber(a)696.7.4RamanAmplifierpower(dB)1550nm1450nmfiber1450nm1550nmOptimalamplificationoccurswhenthedifferenceinwavelengthisaround13.2THz.Thesignaltobeamplifiedmustbelowerinfrequency(longerinwavelength)thanthepump.6.7.4RamanAmplifierpower(dB)706.7.4RamanAmplifier6.7.4RamanAmplifier716.7.4RamanAmplifier6.7.4RamanAmplifier72WDMPUMPLASERINPUTSIGNALOUTPUTSIGNALOpticalfiberISOLATORISOLATORRamanamplifier6.7.4RamanAmplifierWDMPUMPLASERINPUTSIGNALOUTPU73zEDFANonlinearEffectsNoiseHighRAHighpumppower6.7.4RamanAmplifierpulseamplitudezEDFANonlinearEffectsNoiseHi74BroadbandRamanamplifierBroadbandRamanamplifier75BroadbandRamanamplifierBroadbandRamanamplifier76UltraflatamplifierUltraflatamplifier776.7.5NoiseFigureThenoisefigureFisameasureofthenoisecharacteristicsofanamplifier.Fgivesanindicationofthedegradationinasignalowingtoamplification.Amplificationincreasesthesignalpowertoausablelevel,butdoesdegradetheinformation.Itoftenexpressedindecibels:6.7.5NoiseFigureThenoisefi786.7.5NoiseFigureSemiconductorOpticalAmplifier(SOA):8dBErbium-DopedFiberAmplifier(EDFA):6dBErbium-DopedWaveguideAmplifier(EDWA):5dBFiberRamanAmplifier(FRA):4.5dB6.7.5NoiseFigureSemiconducto796.7.5NoiseFigureOpticalfiberpowersignalpowerASEnoiseOpticalSNRNumberofamplifier6.7.5NoiseFigureOpticalfibe806.7.6OpticalAmplifierApplicationsTXAAARXFIBERFIBERLAUNCHAMPINLINEAMPPREAMPPOWERLEVEL6.7.6OpticalAmplifierApplic816.8FiberLaserLaserdiodesandlight-emittingdiodesdon’tcouplethelighttheygenerateefficientlyintofibers.Thisproblemarisesbecauseofthedifferentgeometriesofsemiconductorsourcesandopticalfibers.Inaddition,theradiationpatternofthesourcedoesnotmatchtheacceptancepatternofthefiber,andtheemissionpatternofalaserdiodedoesnotmatchthesingle-modepatternofasingle-modefiber.6.8FiberLaserLaserdiodesan82Fiberamplifierscansolvethisproblem.AcommononeisFabry-Perotresonator,whichconsistsofapump,anamplifyingsection,andfeedbackintheform.

LaserDiodeActiveFiberλpλLM1M2MirrorM1transmitsthepumpwavelengthλpandreflectsthelaserWavelengthλL,whilemirrorM2istransmittingpartiallyatwavelengthλL.6.8FiberLaserFiberamplifierscansolvethi83GRATINGGRATINGWDM980nmPUMPLASERERBIUM-DOPEDFIBERLOOPOutputSignal1550nmErbium-dopedfiberlaser,thegratingsactaspartialmirrorsatthelaser-outputwavelength.6.8FiberLaserGRATINGGRATINGWDM980nmPUMPLAS846.9Vertical-CavitySurface-emittingLaserDiodesThisstructurehasseveraluniquecharacteristics:

Oneisthatthebeampatterniscircular,thesameshapeasthefiber.Thismatchimprovesthecouplingefficiency.

VCSELshaveshortcavitylengths,whichtendtodecreaseresponsetimes.ThisresultisthatVCSELscanbemodulatedatveryhighspeeds.6.9Vertical-CavitySurface-em856.9Vertical-CavitySurface-emittingLaserDiodesMonolithictwo-dimensionallaser-diodearrays6.9Vertical-CavitySurface-em86LightsourceLight-emittingdiodeLaserdiodeLEDsarenormallychosenformultimodeSIlinks.GRINfiberandanLEDcancombinetoproduceasystemtransmittingmoderatelyhighdataratesoverfairlylongdistances.Becauseofhigherinitialcostsandincreasedcircuitcomplexity,laserdiodesareusedonlywhennecessary.Thelargestrate-lengthproductsareachievedwhenasingle-modelaserdiodeismatchedwithasingle-modefiberandoperatedinthelow-loss,longer-wavelengthregionsuchastheCorLbands(1530

to1625nm)LightsourceLight-emittingdio87謝謝騎封篙尊慈榷灶琴村店矣墾桂乖新壓胚奠倘擅寞僥蝕麗鑒晰溶廷籮侶郎蟲林森-消化系統(tǒng)疾病的癥狀體征與檢查林森-消化系統(tǒng)疾病的癥狀體征與檢查謝謝騎封篙尊慈榷灶琴村店矣墾桂乖新壓胚奠倘擅寞僥蝕麗鑒晰溶廷88Chapter6OpticalSources

andAmplifiersChapter689Chapter6OpticalSources

andAmplifiers6.1Light-emittingDiodes6.2Light-emittingDiodeoperatingCharacteristic6.3LaserPrinciples6.4LaserDiodes6.5Laser-diodeoperatingCharacteristic6.7OpticalAmplifiers6.8FiberLasers6.9Vertical-CavitySurface-emittingLaserDiodesChapter6OpticalSources

90LightsourceLight-emittingdiodeLaserdiodeLightsourceLight-emittingdio91ModulationLaser

DirectModulationofLaserDiodeBias+DATAIssues--ComplexDynamicsYield

ExternalModulationofLaserDiodeLaserModulatorBiasBias+DATAIssues--AdditionalComponentModulationLaserDirectModul92ALight-emittingDiodesisapn-junctionsemiconductorthatemitslightwhenforwardbiased.

Circuit6.1Light-emittingDiodesALight-emittingDiodesisap93Intheupper-energyband,calledtheconductionband,electronsnotboundtoindividualatomsarefreetomove.Inthelowerband,thevalenceband,unboundholesarefreetomove.Holeshaveapositivecharge.6.1Light-emittingDiodesTwoallowedbandsofenergiesareseparatedbyaforbiddenregion(abandgap)whosewidthhasenergyWg.Intheupper-energyband,call946.1Light-emittingDiodesInaword,radiationfromanLEDiscausedbytherecombinationofholesandelectronsthatareinjectedintothejunctionbyaforwardbiasvoltage.PNpn-junctionflash366.1Light-emittingDiodesIna956.2Light-emittingDiode

operatingcharacteristicmA0501001507654321mWTheopticpowergeneratedbyanLEDislinearlyproportionaltotheforwarddrivingcurrent.6.2Light-emittingDiode

oper96DigitalmodulationcurrenttimeOutputpowerinputcurrenttimeOpticalpowerThediodeismodulatedbyacurrentsource,whichsimplyturnstheLEDONorOFF.DigitalmodulationcurrenttimeO97AnalogmodulationAnalogmodulationrequiresadcbiastokeepthetotalcurrentintheforwarddirectionatalltimes.OpticalpowertimetimecurrentAnalogmodulationAnalogmodula98Asweknow,theopticspectrumofthesourcedirectlyinfluencesmaterialandwaveguidedispersion.Pulsespreadingduetothesecausesincreaseslinearlywithsourcespectralwidth.LEDsoperatingintheregion0.8-0.9mgenerallyhaswidthof20-50nm,andLEDsemittinginthelonger-wavelengthregionhavewidthsof50-100nm.6.2Light-emittingDiode

operatingcharacteristic6.2Light-emittingDiode

oper99Couplingefficiencydependsheavilyontheradiationpatternofaemitter.

-90°090°BEAMANGLEBEAMINTENSITYθsurface-emittingLEDCouplingefficiencydependshe100Raysincidentonafiber,butoutsideitsacceptanceangle,willnotbecoupled.TheacceptanceangleforafiberhavingNA=0.24isonly14°,soalargeamountofthepowergeneratedbyasurfaceemitterwillberejected.-90°090°BEAMANGLEBEAMINTENSITYθsurface-emittingLEDRaysincidentonafiber,but101Edgeemittersconcentratetheirradiationsomewhatmorethansurfacedevices,providingimprovedcouplingefficiency.-90°-45°0°45°90°120°30°BEAMANGLEBEAMINTENSITYPARALLELPLANEPERPENDICULARPLANEθedge-emittingLEDFlash38Edgeemittersconcentratethei1026.3LaserPrinciplesHereisalistofsomecharacteristicsthatalllaserspossessandthatareimportantintheirutilization:

Pumpingthreshold

Thepowerinputtoalasermustbeaboveacertainthresholdlevelbeforethedevicewillemit.

Outputspectrum

Thelaseroutputpowerisnotatasinglefrequencybutisspreadoverarangeoffrequencies.

Radiationpattern

Therangeofanglesoverwhichalaseremitslightdependsonthesizeoftheemittingareaandonthemodesofoscillationwithinthelaser.6.3LaserPrinciplesHereisa103

thesemiconductorlaserdiodethegaslaserthebulkNd:YAGthefiberlasercommonkindsoflaserAlaserisahigh-frequencygenerator,oroscillator.Foroscillationstooccur,asystemneedsamplification,feedback,monkindsoflaserAlaser104Lightamplificationbystimulatedemissionofradiation

laserLightamplificationbylaser105stimulatedemissionenergyEnergyissuppliedfromoutsideandatomentersexcitedstate.E1groundstateE2excitedstatestimulatedemissionenergyEnerg106stimulatedemissionE2E1hArrivingphotonPhotonarrivesandinteractswithexcitedatom.stimulatedemissionE2E1hArriv107stimulatedemissionE2E1hArrivingphotonAtomemitsadditionalphotonandreturnstothegroundstate.hhstimulatedemissionE2E1hArriv108stimulatedemissionE2E1hArrivingphotonWhenanewphotonisemittedithasidenticalwavelength,phaseanddirectioncharacteristicsastheexcitingphoton.hhstimulatedemissionE2E1hArriv109stimulatedemissionPopulationinversionThenumberofatomsintheupperlevelexceedsthoseinthelowerlevel.stimulatedemissionPopulation110PopulationinversionThenumberofphotonswillincreaseastheypropagate.Morephotonwillencounterupperlevelatoms(causinggenerationofadditional)thanwillmeetlowerlevelatoms(whichwouldabsorbthem).Amediumwithpopulationinversionhasgainandbehavesasanamplifier.PopulationinversionThenumber111energylasingM1M2mirrorPartialmirrorlaserenergylasingM1M2mirrorPartial112mirrorPartialmirroroscillationmirrorPartialmirroroscillatio113LaseroutputLaseroutput1146.4LaserDiodesMETALLIZATIONn-AlGaAs,Wg=1.8eVCONFINEMENTn-AlGaAs,Wg=1.55eVACTIVELAYERn-AlGaAs,Wg=1.55eVCONFINEMENTGaAsSUBSTRATEP-GaAs,CONTACTSiO2,INSULATIONMETALLIZATIONSTRIPECONTACT0.1-0.3μm-1μm-1μm-1μmThestructureofan

AlGaAslaserdiode6.4LaserDiodesMETALLIZATIONn115powerConfinementLayerConfinementLayerActiveLayerRefractiveIndex6.4LaserDiodespowerConfinementLayerConfinem116Manylaserdiodesareedgeemitters.Underforwardbias,chargesareinjectedintotheactivelayer,causingthespontaneousemissionofphotons.Someoftheinjectedchargesarestimulatedtoemitbyotherphotons.Ifthecurrentdensityissufficientlyhigh,thenalargenumberofinjectedchargesareavailableforstimulatedrecombination.Theopticgainwillbelarge.Thethresholdcurrentisreachedwhenthegainislargeenoughtooffsetthediodelosses.Atthispoint,laseroscillationstart.6.4LaserDiodesManylaserdiodesareedgeemi117G

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論