上海市虹口中學2023屆數(shù)學高一上期末考試試題含解析_第1頁
上海市虹口中學2023屆數(shù)學高一上期末考試試題含解析_第2頁
上海市虹口中學2023屆數(shù)學高一上期末考試試題含解析_第3頁
上海市虹口中學2023屆數(shù)學高一上期末考試試題含解析_第4頁
上海市虹口中學2023屆數(shù)學高一上期末考試試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.“”是“為第二象限角”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知角α的終邊過點P(4,-3),則sinα+cosα的值是()A. B.C. D.3.要得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平行移動個單位長度 B.向右平行移動個單位長度C.向左平行移動個單位長度 D.向右平行移動個單位長度4.函數(shù)的圖象可能是A. B.C. D.5.若在上單調(diào)遞減,則的取值范圍是().A. B.C. D.6.在平行四邊形中,與相交于點,是線段中點,的延長線交于點,若,則等于()A. B.C. D.7.函數(shù)的零點所在的區(qū)間為A B.C. D.8.下列函數(shù)中,值域是的是A. B.C. D.9.中國古詩詞中,有一道“八子分綿”的數(shù)學名題:“九百九十六斤綿,贈分八子作盤纏,次第每人多十七,要將第八數(shù)來言”題意是:把996斤綿分給8個兒子作盤纏,按照年齡從大到小的順序依次分綿,年齡小的比年齡大的多17斤綿.那么前3個兒子分到的綿的總數(shù)是()A.89斤 B.116斤C.189斤 D.246斤10.下列說法正確的是A.棱柱被平面分成的兩部分可以都是棱柱 B.底面是矩形的平行六面體是長方體C.棱柱的底面一定是平行四邊形 D.棱錐的底面一定是三角形二、填空題:本大題共6小題,每小題5分,共30分。11.定義在上的偶函數(shù)滿足:當時,,則______12.給出下列命題:①函數(shù)是偶函數(shù);②方程是函數(shù)的圖象的一條對稱軸方程;③在銳角中,;④函數(shù)的最小正周期為;⑤函數(shù)的對稱中心是,,其中正確命題的序號是________.13.已知,若,則_______;若,則實數(shù)的取值范圍是__________14.已知函數(shù)則的值為_______15.函數(shù)的圖像恒過定點___________16.已知向量,,若,,,則的值為__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)為奇函數(shù)(1)求的值;(2)判斷的單調(diào)性,并用定義證明;(3)解不等式18.已知,(1)求的值;(2)求的值.19.已知直線,無論為何實數(shù),直線恒過一定點.(1)求點的坐標;(2)若直線過點,且與軸正半軸、軸正半軸圍成的三角形面積為4,求直線的方程.20.旅行社為某旅行團包飛機去旅游,其中旅行社的包機費為元.旅行團中的每個人的飛機票按以下方式與旅行社結(jié)算:若旅行團的人數(shù)不超過人時,飛機票每張元;若旅行團的人數(shù)多于人時,則予以優(yōu)惠,每多人,每個人的機票費減少元,但旅行團的人數(shù)最多不超過人.設旅行團的人數(shù)為人,飛機票價格元,旅行社的利潤為元.(1)寫出每張飛機票價格元與旅行團人數(shù)之間的函數(shù)關系式;(2)當旅行團人數(shù)為多少時,旅行社可獲得最大利潤?求出最大利潤.21.已知向量=(3,4),=(1,2),=(-2,-2)(1)求||,||的值;(2)若=m+n,求實數(shù)m,n的值;(3)若(+)∥(-+k),求實數(shù)k的值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】利用輔助角公式及正弦函數(shù)的性質(zhì)解三角形不等式,再根據(jù)集合的包含關系判斷充分條件、必要條件即可;【詳解】解:由,即,所以,,解得,,即,又第二象限角為,因為真包含于,所以“”是“為第二象限角”的必要不充分條件;故選:B2、A【解析】由三角函數(shù)的定義可求得sinα與cosα,從而可得sinα+cosα的值【詳解】∵知角α的終邊經(jīng)過點P(4,-3),∴sinα,cosα,∴sinα+cosα故選:A3、C【解析】根據(jù)三角函數(shù)圖象的平移變換求解即可.【詳解】由題意,為得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點向左平移個單位長度即可.故選:C4、C【解析】函數(shù)即為對數(shù)函數(shù),圖象類似的圖象,位于軸的右側(cè),恒過,故選:5、B【解析】令f(x)=,由題意得f(x)在上單調(diào)遞增,且f(﹣1),由此能求出a的取值范圍【詳解】∵函數(shù)在上單調(diào)遞減,令f(x)=,∴f(x)=在上單調(diào)遞增,且f(﹣1)∴,解得a≤8故選B.【點睛】本題考查實數(shù)值的求法,注意函數(shù)的單調(diào)性的合理運用,屬于基礎題.6、A【解析】化簡可得,再由及選項可得答案【詳解】解:由題意得,,;、、三點共線,,結(jié)合選項可知,;故選:7、B【解析】根據(jù)零點的存在性定理,依次判斷四個選項的區(qū)間中是否存在零點【詳解】,,,由零點的存在性定理,函數(shù)在區(qū)間內(nèi)有零點,選擇B【點睛】用零點的存在性定理只能判斷函數(shù)有零點,若要判斷有幾個零點需結(jié)合函數(shù)的單調(diào)性判斷8、D【解析】分別求出各函數(shù)的值域,即可得到答案.【詳解】選項中可等于零;選項中顯然大于1;選項中,,值域不是;選項中,故.故選D.【點睛】本題考查函數(shù)的性質(zhì)以及值域的求法.屬基礎題.9、D【解析】利用等差數(shù)列的前項和的公式即可求解.【詳解】用表示8個兒子按照年齡從大到小得到的綿數(shù),由題意得數(shù)列是公差為17的等差數(shù)列,且這8項的和為996,所以,解之得所以,即前3個兒子分到的綿是246斤故選:D10、A【解析】對于B.底面是矩形的平行六面體,它的側(cè)面不一定是矩形,故它也不一定是長方體,故B錯;對于C.棱柱的底面是平面多邊形,不一定是平行四邊形,故C錯;對于D.棱錐的底面是平面多邊形,不一定是三角形,故D錯;故選A考點:1.命題的真假;2.空間幾何體的特征二、填空題:本大題共6小題,每小題5分,共30分。11、12【解析】根據(jù)偶函數(shù)定義,結(jié)合時的函數(shù)解析式,代值計算即可.【詳解】因為是定義在上的偶函數(shù),故可得,又當時,,故可得,綜上所述:.故答案為:.12、①②③【解析】由誘導公式化簡得函數(shù),判斷①正確;求出函數(shù)的圖象的對稱軸(),當時,,判斷②正確;在銳角中,由化簡得到,判斷③正確;直接求出函數(shù)的最小正周期為,判斷④錯誤;直接求出函數(shù)的對稱中心是,判斷⑤錯誤.【詳解】①因為函數(shù),所以函數(shù)是偶函數(shù),故①正確;②因為函數(shù),所以函數(shù)圖象的對稱軸(),即(),當時,,故②正確;③在銳角中,,即,所以,故③正確;④函數(shù)的最小正周期為,故④錯誤;⑤令,解得,所以函數(shù)的對稱中心是,故⑤錯誤.故答案為:①②③【點睛】本題考查三角函數(shù)的圖象與性質(zhì)、誘導公式與三角恒等變換,是中檔題.13、①.②.【解析】先判斷函數(shù)的奇偶性,由求解;再根據(jù)函數(shù)的單調(diào)性,由求解.【詳解】因為的定義域為R,且,,所以是奇函數(shù),又,則-2;因為在上是增函數(shù),所以在上是增函數(shù),又是R上的奇函數(shù),所以在R上遞增,且,所以由,得,即,所以,解得或,所以實數(shù)的取值范圍是,故答案為:,14、【解析】首先計算,再求的值.【詳解】,所以.故答案為:15、【解析】根據(jù)指數(shù)函數(shù)過定點,結(jié)合函數(shù)圖像平移變換,即可得過的定點.【詳解】因為指數(shù)函數(shù)(,且)過定點是將向左平移2個單位得到所以過定點.故答案為:.16、C【解析】分析:由,,,可得向量與平行,且,從而可得結(jié)果.詳解:∵,,,∴向量與平行,且,∴.故答案為.點睛:本題主要考查共線向量的坐標運算,平面向量的數(shù)量積公式,意在考查對基本概念的理解與應用,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)單調(diào)遞減,證明見解析(3)【解析】(1)根據(jù)奇函數(shù)性質(zhì)求解即可;(2)根據(jù)定義法嚴格證明單調(diào)性,注意式子正負的判斷即可求解;(3)根據(jù)奇函數(shù)性質(zhì)化簡不等式得,再根據(jù)函數(shù)單調(diào)性得到,代入函數(shù)解不等式即可求解.【小問1詳解】因為為奇函數(shù)且的定義域為,所以由奇函數(shù)性質(zhì)得,解得,當時,,,即,符合題意.【小問2詳解】在上單調(diào)遞減,證明如下:由(1)知,,,時,,因為,所以,,所以,即在上單調(diào)遞減【小問3詳解】因為,所以,因為為奇函數(shù),,所以,又因為在上單調(diào)遞減,所以,即,所以,即,解得,即不等式的解集為18、(1)(2)【解析】(1)化簡得到原式,代入數(shù)據(jù)得到答案.(2)變換得到,代入數(shù)據(jù)得到答案.【詳解】(1).(2).【點睛】本題考查了利用齊次式計算函數(shù)值,變換是解題的關鍵.19、(1)(2)【解析】(1)將直線變形為,令,即可解出定點坐標;(2)可設直線為,根據(jù)題意可得到面積為,進而解出參數(shù)值解析:(1)將直線的方程整理為:,解方程組,得所以定點的坐標為.(2)由題意直線的斜率存在,設為,于是,即,令,得;令,得,于是.解得.所以直線的方程為,即.20、(1);(2)當旅游團人數(shù)為或時,旅行社可獲得最大利潤為元.【解析】(1)討論和兩種情況,分別計算得到答案.(2),分別計算最值得到答案.【詳解】(1)依題意得,當時,.當時,;∴(2)設利潤為,則.當且時,,當且時,,其對稱軸為因為,所以當或時,.故當旅游團人數(shù)為或時,旅行社可獲得最大利潤為元.【點睛】本題考查了分段函數(shù)的應用,意在考查學生的應用能力和計算能力.21、(1)||=5;;(2);(3).【解析】(1)利用向量的模長的坐標公式即得;(2)利用向量的線性坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論