商丘市重點中學2022年高一上數(shù)學期末預測試題含解析_第1頁
商丘市重點中學2022年高一上數(shù)學期末預測試題含解析_第2頁
商丘市重點中學2022年高一上數(shù)學期末預測試題含解析_第3頁
商丘市重點中學2022年高一上數(shù)學期末預測試題含解析_第4頁
商丘市重點中學2022年高一上數(shù)學期末預測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.函數(shù)的圖像的一條對稱軸是()A. B.C. D.2.已知集合A={0,1},B={-1,0},則A∩B=()A.0, B.C. D.3.中國宋代的數(shù)學家秦九韶曾提出“三斜求積術(shù)”,即假設在平面內(nèi)有一個三角形,邊長分別為,三角形的面積S可由公式求得,其中為三角形周長的一半,這個公式也被稱為海倫----秦九韶公式,現(xiàn)有一個三角形的邊長滿足,則此三角形面積的最大值為()A.6 B.9C.12 D.184.函數(shù)的部分圖象是()A. B.C. D.5.函數(shù)f(x)=2ax+1–1(a>0,且a≠1)恒過定點A.(–1,–1) B.(–1,1)C.(0,2a–1) D.(0,1)6.函數(shù)(A,ω,φ為常數(shù),A>0,ω>0,)的部分圖象如圖所示,則()A. B.C. D.7.已知角與角的終邊關于直線對稱,且,則等于()A. B.C. D.8.若,則的大小關系為.A. B.C. D.9.一個空間幾何體的三視圖如圖所示,則該幾何體的表面積為A.7B.9C.11D.1310.如圖所示,液體從一圓錐形漏斗漏入一圓柱形桶中,開始時,漏斗盛滿液體,經(jīng)過3分鐘漏完.已知圓柱中液面上升的速度是一個常量,H是圓錐形漏斗中液面下落的距離,則H與下落時間(分)的函數(shù)關系表示的圖象只可能是()A. B.C. D.11.已知函數(shù)f(x)=有兩不同的零點,則的取值范圍是()A.(?∞,0) B.(0,+∞)C.(?1,0) D.(0,1)12.已知函數(shù)在上單調(diào)遞減,且關于的方程恰好有兩個不相等的實數(shù)解,則的取值范圍是()A. B.C. D.二、填空題(本大題共4小題,共20分)13.已知函數(shù)則不等式的解集是_____________14.某同學在研究函數(shù)時,給出下列結(jié)論:①對任意成立;②函數(shù)的值域是;③若,則一定有;④函數(shù)在上有三個零點.則正確結(jié)論的序號是_______.15.已知在上的最大值和最小值分別為和,則的最小值為__________16.已知函數(shù),分別是定義在R上的偶函數(shù)和奇函數(shù),且滿足,則函數(shù)的解析式為____________________;若函數(shù)有唯一零點,則實數(shù)的值為____________________三、解答題(本大題共6小題,共70分)17.已知圓經(jīng)過點,和直線相切.(1)求圓的方程;(2)若直線經(jīng)過點,并且被圓截得的弦長為2,求直線的方程.18.已知(1)求的值(2)求19.已知函數(shù)的定義域為,不等式的解集為設集合,且,求實數(shù)的取值范圍;定義且,求20.已知A(1,1)和圓C:(x+2)2+(y﹣2)2=1,一束光線從A發(fā)出,經(jīng)x軸反射后到達圓C(1)求光線所走過的最短路徑長;(2)若P為圓C上任意一點,求x2+y2﹣2x﹣4y的最大值和最小值21.已知函數(shù)=的部分圖象如圖所示(1)求的值;(2)求的單調(diào)增區(qū)間;(3)求在區(qū)間上的最大值和最小值22.已知函數(shù).(1)當時,求在上的值域;(2)當時,已知,若有,求的取值范圍.

參考答案一、選擇題(本大題共12小題,共60分)1、C【解析】對稱軸穿過曲線的最高點或最低點,把代入后得到,因而對稱軸為,選.2、B【解析】利用交集定義直接求解【詳解】解:∵集合A={0,1},B={-1,0},∴A∩B={0}故選B【點睛】本題考查交集的求法,考查交集定義,是基礎題3、C【解析】根據(jù)題意可得,代入面積公式,配方即可求出最大值.【詳解】由,,則,所以,當時,取得最大值,此時.故選:C4、C【解析】首先判斷函數(shù)的奇偶性,即可排除AD,又,即可排除B.【詳解】因為,定義域為R,關于原點對稱,又,故函數(shù)為奇函數(shù),圖象關于原點對稱,故排除AD;又,故排除B.故選:C.5、B【解析】令x+1=0,求得x和y的值,從而求得函數(shù)f(x)=2ax+1–1(a>0,且a≠1)恒過定點的坐標【詳解】令x+1=0,求得x=-1,且y=1,故函數(shù)f(x)=2ax+1–1(a>0且a≠1)恒過定點(-1,1),故選B.【點睛】】本題主要考查指數(shù)函數(shù)的單調(diào)性和特殊點,屬于基礎題6、B【解析】根據(jù)函數(shù)圖像易得,,求得,再將點代入即可求得得值.【詳解】解:由圖可知,,則,所以,所以,將代入得,所以,又,所以.故選:B.7、A【解析】先在角終邊取一點,利用角與角的終邊關于直線對稱寫出對稱點的坐標,即可求得,進而求得.【詳解】由知角終邊在第一或第二象限,在終邊上取一點或,又角與角的終邊關于直線對稱,故角的終邊必過點或,故,則.故選:A.8、D【解析】由指數(shù)函數(shù),對數(shù)函數(shù)的單調(diào)性,求出的大致范圍即可得解.【詳解】解:因為,,即,故選D.【點睛】本題考查了比較指數(shù)值,對數(shù)值的大小關系,屬基礎題.9、B【解析】該幾何體是一個圓上面挖掉一個半球,S=2π×3+π×12+=9π.10、A【解析】利用特殊值法,圓柱液面上升速度是常量,表示圓錐漏斗中液體單位時間內(nèi)落下相同的體積,當時間取分鐘時,液面下降的高度與漏斗高度的比較.【詳解】由于所給的圓錐形漏斗上口大于下口,當時間取分鐘時,液面下降的高度不會達到漏斗高度的,對比四個選項的圖象可得結(jié)果.故選:A【點睛】本題主要考查了函數(shù)圖象的判斷,常利用特殊值和函數(shù)的性質(zhì)判斷,屬于中檔題.11、A【解析】函數(shù)f(x)=有兩不同的零點,可以轉(zhuǎn)化為直線與函數(shù)的圖象有兩個不同的交點,構(gòu)造不等式即可求得的取值范圍.【詳解】由題可知方程有兩個不同的實數(shù)根,則直線與函數(shù)的圖象有兩個不同的交點,作出與的大致圖象如下:不妨設,由圖可知,,整理得,由基本不等式得,(當且僅當時等號成立)又,所以,解得,故選:A12、C【解析】由在,上單調(diào)遞減,得,由在上單調(diào)遞減,得,作出函數(shù)且在上的大致圖象,利用數(shù)形結(jié)合思想能求出的取值范圍【詳解】解:由在上單調(diào)遞減,得,又由且在上單調(diào)遞減,得,解得,所以,作出函數(shù)且在上的大致圖象,由圖象可知,在上,有且僅有一個解,故在上,同樣有且僅有一個解,當,即時,聯(lián)立,即,則,解得:,當時,即,由圖象可知,符合條件綜上:故選:C二、填空題(本大題共4小題,共20分)13、【解析】分和0的大小關系分別代入對應的解析式即可求解結(jié)論.【詳解】∵函數(shù),∴當,即時,,故;當,即時,,故;∴不等式的解集是:.故答案為:.14、①②③【解析】由奇偶性判斷①,結(jié)合①對,,三種情況討論求值域,判斷②,由單調(diào)性判斷③,由③可知的圖像與函數(shù)的圖像只有兩個交點,進而判斷④,從而得出答案【詳解】①,即,故正確;②當時,,由①可知當時,,當時,,所以函數(shù)的值域是,正確;③當時,,由反比例函數(shù)的單調(diào)性可知,在上是增函數(shù),由①可知在上也是增函數(shù),所以若,則一定有,正確;④由③可知的圖像與函數(shù)的圖像只有兩個交點,故錯誤綜上正確結(jié)論的序號是①②③【點睛】本題考查函數(shù)的基本性質(zhì),包括奇偶性,單調(diào)性,值域等,屬于一般題15、【解析】如圖:則當時,即時,當時,原式點睛:本題主要考查了分段函數(shù)求最值問題,在定義域為動區(qū)間的情況下進行分類討論,先求出最大值與最小值的情況,然后計算,本題的關鍵是要注意數(shù)形結(jié)合,結(jié)合圖形來研究最值問題,本題有一定的難度16、(1).(2).或【解析】把方程中的換成,然后利用奇偶性可得另一方程,聯(lián)立可解得;令,可得為偶函數(shù),從而可得關于對稱,由函數(shù)有唯一零點,可得,從而可求得的值【詳解】解:因為函數(shù),分別是定義在上的偶函數(shù)和奇函數(shù),所以,因為,①所以,即,②①②聯(lián)立,可解得令,則,所以為偶函數(shù),所以關于對稱,因為有唯一的零點,所以的零點只能為,即,解得或故答案為:;或【點睛】關鍵點點睛:此題考查函數(shù)奇偶性的應用,考查函數(shù)的零點,解題的關鍵是令,可得為偶函數(shù),從而可得關于對稱,由函數(shù)有唯一零點,可得,從而可求得的值,考查數(shù)學轉(zhuǎn)化思想和計算能力,屬于中檔題三、解答題(本大題共6小題,共70分)17、(1)(x-1)2+(y+2)2=2;(2)x=2或3x-4y-6=0【解析】(1)先求線段AB的垂直平分線方程為,設圓心的坐標為C(a,-a-1),由圓心到點的距離和到切線的距離相等求解即可;(2)由題知圓心C到直線l的距離,進而討論直線斜率存在不存在兩種情況求解即可.試題解析:(1)由題知,線段AB的中點M(1,-2),,線段AB的垂直平分線方程為,即,設圓心的坐標為C(a,-a-1),則,化簡,得a2-2a+1=0,解得a=1.∴C(1,-2),半徑r=|AC|==∴圓C的方程為(x-1)2+(y+2)2=2.(解二:可設原方程用待定系數(shù)法求解)(2)由題知圓心C到直線l的距離,①當直線l的斜率不存在時,直線l的方程為x=2,此時直線l被圓C截得的弦長為2,滿足條件.②當直線l的斜率存在時,設直線l的方程為,由題意得,解得k=,∴直線l的方程為y=(x-2)綜上所述,直線l的方程為x=2或3x-4y-6=0.點睛:直線與圓的位置關系常用處理方法:(1)直線與圓相切處理時要利用圓心與切點連線垂直,構(gòu)建直角三角形,進而利用勾股定理可以建立等量關系;(2)直線與圓相交,利用垂徑定理也可以構(gòu)建直角三角形;(3)直線與圓相離時,當過圓心作直線垂線時長度最小18、(1)(2)【解析】根據(jù)條件可解出與的值,再利用商數(shù)關系求解【小問1詳解】,又,解得故【小問2詳解】由誘導公式得19、(1);(2)【解析】由二次不等式的解法得,由集合間的包含關系列不等式組求解即可;由對數(shù)函數(shù)的定義域可得,利用指數(shù)函數(shù)的單調(diào)性解不等式可得,由定義且,先求出,再求出即可【詳解】解不等式,得:,即,又集合,且,則有,解得:,故答案為.令,解得:,即,由定義且可知:即,即,故答案為.【點睛】本題考查了二次不等式的解法、對數(shù)函數(shù)的定義域、指數(shù)函數(shù)的單調(diào)性以及新定義問題,屬中檔題.新定義題型的特點是:通過給出一個新概念,或約定一種新運算,或給出幾個新模型來創(chuàng)設全新的問題情景,要求考生在閱讀理解的基礎上,依據(jù)題目提供的信息,聯(lián)系所學的知識和方法,實現(xiàn)信息的遷移,達到靈活解題的目的.遇到新定義問題,應耐心讀題,分析新定義的特點,弄清新定義的性質(zhì),按新定義的要求,“照章辦事”,逐條分析、驗證、運算,使問題得以解決.20、(1);(2)最大值為11,最小值為﹣1【解析】(1)點關于x軸的對稱點在反射光線上,當反射光線從點經(jīng)軸反射到圓周的路程最短,最短為;(2)將式子化簡得到,轉(zhuǎn)化為點點距,進而轉(zhuǎn)化為圓心到的距離,加減半徑,即可求得最值.【詳解】(1)關于x軸的對稱點為,由圓C:(x+2)2+(y﹣2)2=1得圓心坐標為C(﹣2,2),∴,即光線所走過的最短路徑長為;(2)x2+y2﹣2x﹣4y=(x﹣1)2+(y﹣2)2﹣5(x﹣1)2+(y﹣2)2表示圓C上一點P(x,y)到點(1,2)的距離的平方,由題意,得,因此,x2+y2﹣2x﹣4y的最大值為11,最小值為﹣1【點睛】本題考查最短路徑問題,以及圓外一點到圓上一點的距離的最值問題,屬于基礎題;求最短路徑時作對稱點,由兩點之間線段最短的原理確定長度,將圓外一點距離的最值轉(zhuǎn)化為點到圓心的距離和半徑之間的關系.21、(1);(2)單調(diào)遞增區(qū)間為(3)時,取得最大值1;時,f(x)取得最小值【解析】(1)利用圖象的最高點和最低點的縱坐標確定振幅,由相鄰對稱軸間的距離確定函數(shù)的周期和值;(2)利用正弦函數(shù)的單調(diào)性和整體思想進行求解;(3)利用三角函數(shù)的單調(diào)性和最值進行求解試題解析:(1)由圖象知由圖象得函數(shù)最小正周期為=,則由=得(2)令..所以f(x)的單調(diào)遞增區(qū)間為(3)..當即時,取得最大值1;當即時,f(x)取得最小值22、(1);(2).【解析】(1)將方程整理為關于的二次函數(shù),令,利用二次函數(shù)的圖象

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論