




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.設(shè),則等于()A. B.C. D.2.我們知道,函數(shù)的圖象關(guān)于原點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),有同學發(fā)現(xiàn)可以將其推廣為:函數(shù)的圖象關(guān)于點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù).據(jù)此,我們可以得到函數(shù)圖象的對稱中心為()A. B.C. D.3.已知圓:與圓:,則兩圓的位置關(guān)系是A.相交 B.相離C.內(nèi)切 D.外切4.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.給定下列四個命題:①若一個平面內(nèi)的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是A.①和② B.②和③C.③和④ D.②和④6.已知,則()A. B.C.2 D.7.若函數(shù)滿足且的最小值為,則函數(shù)的單調(diào)遞增區(qū)間為A. B.C. D.8.已知角的頂點與平面直角坐標系的原點重合,始邊與x軸的正半軸重合,終邊經(jīng)過點,若,則的值為()A. B.C. D.9.若,是第二象限角,則()A. B.3C.5 D.10.函數(shù)的圖象的相鄰兩支截直線所得的線段長為,則的值是()A. B.C. D.11.在新冠肺炎疫情初始階段,可以用指數(shù)模型::I(t)=ert(其中r為指數(shù)增長率)描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律.有學者基于已有數(shù)據(jù)估計出累計感染病例數(shù)增加1倍需要的時間約為2天,據(jù)此,在新冠肺炎疫情初始階段,指數(shù)增長率r的值約為()(參考數(shù)值:ln20.69)A.0.345 B.0.23C.0.69 D.0.83112.已知,,,,則,,的大小關(guān)系是()A. B.C. D.二、填空題(本大題共4小題,共20分)13.若,則___________14.已知,,則的值為___________.15.已知平面和直線,給出條件:①;②;③;④;⑤(1)當滿足條件_________時,有;(2)當滿足條件________時,有.(填所選條件的序號)16.在中,,則_____________三、解答題(本大題共6小題,共70分)17.揭陽市某體育用品商店購進一批羽毛球拍,每件進價為100元,售價為160元,每星期可賣出80件.商家決定降價促銷,根據(jù)市場調(diào)查,每降價10元,每星期可多賣出20件.(1)求商家降價前每星期的銷售利潤為多少元?(2)降價后,商家要使每星期的銷售利潤最大,應(yīng)將售價定為多少元?最大銷售利潤是多少?18.如圖,已知圓的圓心在坐標原點,點是圓上的一點(Ⅰ)求圓的方程;(Ⅱ)若過點的動直線與圓相交于,兩點.在平面直角坐標系內(nèi),是否存在與點不同的定點,使得恒成立?若存在,求出點的坐標;若不存在,請說明理由19.求函數(shù)的定義域,并指出它的單調(diào)性及單調(diào)區(qū)間20.已知函數(shù)(,且).(1)求的值,并證明不是奇函數(shù);(2)若,其中e是自然對數(shù)的底數(shù),證明:存在不為0的零點,并求.注:設(shè)x為實數(shù),表示不超過x的最大整數(shù).參考數(shù)據(jù):,,,.21.已知函數(shù).(1)求的最小正周期;(2)求的單調(diào)區(qū)間;(3)在給定的坐標系中作出函數(shù)的簡圖,并直接寫出函數(shù)在區(qū)間上的取值范圍.22.在國家大力發(fā)展新能源汽車產(chǎn)業(yè)政策下,我國新能源汽車的產(chǎn)銷量高速增長.某地區(qū)年底新能源汽車保有量為輛,年底新能源汽車保有量為輛,年底新能源汽車保有量為輛(1)根據(jù)以上數(shù)據(jù),試從(,且),,(,且),三種函數(shù)模型中選擇一個最恰當?shù)哪P蛠砜坍嬓履茉雌嚤S辛康脑鲩L趨勢(不必說明理由),設(shè)從年底起經(jīng)過年后新能源汽車保有量為輛,求出新能源汽車保有量關(guān)于的函數(shù)關(guān)系式;(2)假設(shè)每年新能源汽車保有量按(1)中求得的函數(shù)模型增長,且傳統(tǒng)能源汽車保有量每年下降的百分比相同,年底該地區(qū)傳統(tǒng)能源汽車保有量為輛,預計到年底傳統(tǒng)能源汽車保有量將下降.試估計到哪一年底新能源汽車保有量將超過傳統(tǒng)能源汽車保有量.(參考數(shù)據(jù):,)
參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】由全集,以及與,找出與的補集,求出補集的并集即可【詳解】,,則故選:B2、A【解析】依題意設(shè)函數(shù)圖象的對稱中心為,則為奇函數(shù),再根據(jù)奇函數(shù)的性質(zhì)得到方程組,解得即可;【詳解】解:依題意設(shè)函數(shù)圖象的對稱中心為,由此可得為奇函數(shù),由奇函數(shù)的性質(zhì)可得,解得,則函數(shù)圖象的對稱中心為;故選:A3、C【解析】分析:求出圓心的距離,與半徑的和差的絕對值比較得出結(jié)論詳解:圓,圓,,所以內(nèi)切.故選C點睛:兩圓的位置關(guān)系判斷如下:設(shè)圓心距為,半徑分別為,則:,內(nèi)含;,內(nèi)切;,相交;,外切;,外離4、A【解析】首先求解二次不等式,然后結(jié)合不等式的解集即可確定充分性和必要性是否成立即可.【詳解】求解二次不等式可得:或,據(jù)此可知:是的充分不必要條件.故選:A.【點睛】本題主要考查二次不等式的解法,充分性和必要性的判定,屬于基礎(chǔ)題.5、D【解析】利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對四個命題分別分析進行選擇.【詳解】當兩個平面相交時,一個平面內(nèi)的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內(nèi)與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力,是中檔題.6、B【解析】先求出,再求出,最后可求.【詳解】因為,故,因為,故,而,故,所以,故,所以,故選:B7、D【解析】分析:首先根據(jù)誘導公式和輔助角公式化簡函數(shù)解析式,之后應(yīng)用題的條件求得函數(shù)的最小正周期,求得的值,從而求得函數(shù)解析式,之后利用整體思維,借助于正弦型函數(shù)的解題思路,求得函數(shù)的單調(diào)增區(qū)間.詳解:,根據(jù)題中條件滿足且的最小值為,所以有,所以,從而有,令,整理得,從而求得函數(shù)的單調(diào)遞增區(qū)間為,故選D.點睛:該題考查的是有關(guān)三角函數(shù)的綜合問題,涉及到的知識點有誘導公式、輔助角公式、函數(shù)的周期以及正弦型函數(shù)的單調(diào)區(qū)間的求法,在結(jié)題的過程中,需要對各個知識點要熟記,解題方法要明確.8、C【解析】根據(jù)終邊經(jīng)過點,且,利用三角函數(shù)的定義求解.【詳解】因為角終邊經(jīng)過點,且,所以,解得,故選:C9、C【解析】由題知,再根據(jù)誘導公式與半角公式計算即可得答案.【詳解】解:因為,是第二象限角,所以,所以.故選:C10、D【解析】由正切函數(shù)的性質(zhì),可以得到函數(shù)的周期,進而可以求出解析式,然后求出即可【詳解】由題意知函數(shù)的周期為,則,所以,則.故選D.【點睛】本題考查了正切函數(shù)的性質(zhì),屬于基礎(chǔ)題11、A【解析】由題設(shè)可知第天感染病例數(shù)為,則第天的感染感染病例數(shù)為,由感染病例數(shù)增加1倍需要的時間約為2天,則,解出即可得出答案.【詳解】由題設(shè)可知第天感染病例數(shù)為,則第天的感染感染病例數(shù)為由感染病例數(shù)增加1倍需要的時間約為2天,則所以,即所以故選:A12、B【解析】根據(jù)題意不妨設(shè),利用對數(shù)的運算性質(zhì)化簡x,利用指數(shù)函數(shù)的單調(diào)性求出y的取值范圍,利用指數(shù)冪的運算求出z,進而得出結(jié)果.【詳解】由,不妨設(shè),則,,,所以,故選:B二、填空題(本大題共4小題,共20分)13、【解析】只需對分子分母同時除以,將原式轉(zhuǎn)化成關(guān)于的表達式,最后利用方程思想求出.再利用二倍角的正切公式,即可求得結(jié)論【詳解】解:,即,故答案為:【點睛】本題考查同角三角函數(shù)的關(guān)系,考查二倍角的正切公式,正確運用公式是關(guān)鍵,屬于基礎(chǔ)題14、【解析】利用和角正弦公式、差角余弦公式及同角商數(shù)關(guān)系,將目標式化為即可求值.【詳解】.故答案為:.15、(1).③⑤;(2).②⑤【解析】若m?α,α∥β,則m∥β;若m⊥α,α∥β,則m⊥β故答案為(1)③⑤(2)②⑤考點:本題主要考查直線與平面垂直的位置關(guān)系點評:熟練掌握直線與平面平行、垂直的判定與性質(zhì),基礎(chǔ)題16、【解析】先由正弦定理得到,再由余弦定理求得的值【詳解】由,結(jié)合正弦定理可得,故設(shè),,(),由余弦定理可得,故.【點睛】本題考查了正弦定理和余弦定理的運用,屬于基礎(chǔ)題三、解答題(本大題共6小題,共70分)17、(1)4800(2)將售價定為150元,最大銷售利潤是5000元.【解析】(1)由銷售利潤=單件利潤×銷售量,即可求商家降價前每星期的銷售利潤;(2)由題意得銷售利潤,根據(jù)二次函數(shù)的性質(zhì)即可知最大銷售利潤及對應(yīng)的售價.【小問1詳解】由題意,商家降價前每星期的銷售利潤為(元);【小問2詳解】設(shè)售價定為元,則銷售利潤.當時,有最大值5000∴應(yīng)將售價定為150元,最大銷售利潤是5000元.18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)設(shè)圓的方程為,將代入,求得,從而可得結(jié)果;(Ⅱ)先設(shè),由可得,再證明對任意,滿足即可,,則利用韋達定理可得,,由角平分線定理可得結(jié)果.【詳解】(Ⅰ)設(shè)圓的方程為,將代入,求得,所以圓的方程為;(Ⅱ)先設(shè),,由由(舍去)再證明對任意,滿足即可,由,則則利用韋達定理可得,化為所以,由角平分線定理可得,即存在與點不同的定點,使得恒成立,.【點睛】本題主要考查待定系數(shù)法求圓方程及韋達定理、直線和圓的位置關(guān)系及曲線線過定點問題.屬于難題.探索曲線過定點的常見方法有兩種:①可設(shè)出曲線方程,然后利用條件建立等量關(guān)系進行消元(往往可以化為的形式,根據(jù)求解),借助于曲線系的思想找出定點(直線過定點,也可以根據(jù)直線的各種形式的標準方程找出定點).②從特殊情況入手,先探求定點,再證明與變量無關(guān).19、答案見解析【解析】由題,解不等式得定義域,再根據(jù),利用整體代換法求解函數(shù)的單調(diào)遞減區(qū)間即可.【詳解】解:要使函數(shù)有意義,應(yīng)滿足,解得∴函數(shù)定義域為.∵,∴,解得,∴函數(shù)的單調(diào)遞減區(qū)間為.20、(1),證明見解析(2)證明見解析,【解析】(1)利用,可證明;(2)利用零點的判定方法證明(5),可求得【小問1詳解】證明:,,,,不是奇函數(shù);【小問2詳解】,,(5),(5),存在不為0的零點21、(1)周期為;(2)遞增區(qū)間是:,;遞減區(qū)間是:[k+,k+],;(3)簡圖如圖所示,取值范圍是.【解析】(1)利用正弦函數(shù)的周期公式即可計算得解;(2)利用正弦函數(shù)的單調(diào)性解不等式即可求解;(3)利用五點作圖法即可畫出函數(shù)在一個周期內(nèi)的圖象,根據(jù)正弦函數(shù)的性質(zhì)即可求解取值范圍【詳解】(1)因為函數(shù),所以周期;(2)由,,得,.函數(shù)的單調(diào)遞增區(qū)間是:,.函數(shù)的單調(diào)遞減區(qū)間是:[k+,k+],;(3)函數(shù)即再簡圖如圖所示.因為所以函數(shù)在區(qū)間上的取值范圍是.22、(1)應(yīng)選擇的函數(shù)模型是(,且),函數(shù)關(guān)系式為;(2)年底.【解析】(1)根據(jù)題中的數(shù)據(jù)可得出所選的函數(shù)模型,然后將對應(yīng)點的坐標代入函數(shù)解析式,求出參數(shù)的值,即可得出函數(shù)解析式;(2)設(shè)傳統(tǒng)能源汽
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中生物光合作用與呼吸作用綜合應(yīng)用卷:2025年真題演練
- 出版產(chǎn)業(yè)鏈中的數(shù)據(jù)共享與合作創(chuàng)新
- 牦牛產(chǎn)品市場化與品牌建設(shè)路徑
- 民俗體驗中的非物質(zhì)文化遺產(chǎn)保護策略
- 應(yīng)急救護知識進校園的面臨的問題、機遇與挑戰(zhàn)
- 服裝業(yè)時尚趨勢解碼
- 廚藝革新之路
- 老舊供水管網(wǎng)更新改造工程項目風險管理
- 吉蘭巴雷綜合征護理規(guī)范
- 《2025年至2030年長期貨物運輸合同》
- 椎旁小關(guān)節(jié)病變影像診斷
- 教科版五年級下冊科學第四單元《熱》核心知識點
- 急性心肌梗死病史簡介及護理查房
- MOOC 臨床生物化學檢驗技術(shù)-杭州醫(yī)學院 中國大學慕課答案
- 燙傷的護理課件
- 酸嘢商業(yè)計劃書
- 2023-2024學年人教版小學英語四年級下冊期末測試卷含答案
- 《唐詩三百首》讀書分享交流會
- JTS-T 200-2023 設(shè)計使用年限50年以上港口工程結(jié)構(gòu)設(shè)計指南
- 展覽費用預算方案
- 輸血科崗位職責、技術(shù)操作規(guī)程和管理制度
評論
0/150
提交評論