




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
DiscountedCashFlowValuationChapter4DiscountedCashFlowValuationKeyConceptsandSkillsBeabletocomputethefuturevalueand/orpresentvalueofasinglecashfloworseriesofcashflowsBeabletocomputethereturnonaninvestmentBeabletouseafinancialcalculatorand/orspreadsheettosolvetimevalueproblemsUnderstandperpetuitiesandannuitiesKeyConceptsandSkillsBeableChapterOutline4.1Valuation:TheOne-PeriodCase4.2TheMultiperiodCase4.3CompoundingPeriods4.4Simplifications4.5WhatIsaFirmWorth?ChapterOutline4.1Valuation:4.1TheOne-PeriodCaseIfyouweretoinvest$10,000at5-percentinterestforoneyear,yourinvestmentwouldgrowto$10,500.$500wouldbeinterest($10,000×.05)$10,000istheprincipalrepayment($10,000×1)$10,500isthetotaldue.Itcanbecalculatedas:$10,500=$10,000×(1.05)ThetotalamountdueattheendoftheinvestmentiscalltheFutureValue(FV).4.1TheOne-PeriodCaseIfyouFutureValueIntheone-periodcase,theformulaforFVcanbewrittenas:FV=C0×(1+r)TWhereC0iscashflowtoday(timezero),andristheappropriateinterestrate.FutureValueIntheone-periodPresentValueIfyouweretobepromised$10,000dueinoneyearwheninterestratesare5-percent,yourinvestmentwouldbeworth$9,523.81intoday’sdollars.Theamountthataborrowerwouldneedtosetasidetodaytobeabletomeetthepromisedpaymentof$10,000inoneyeariscalledthePresentValue(PV).Notethat$10,000=$9,523.81×(1.05).PresentValueIfyouweretobePresentValueIntheone-periodcase,theformulaforPVcanbewrittenas:WhereC1iscashflowatdate1,andristheappropriateinterestrate.PresentValueIntheone-periodNetPresentValueTheNetPresentValue(NPV)ofaninvestmentisthepresentvalueoftheexpectedcashflows,lessthecostoftheinvestment.Supposeaninvestmentthatpromisestopay$10,000inoneyearisofferedforsalefor$9,500.Yourinterestrateis5%.Shouldyoubuy?NetPresentValueTheNetPreseNetPresentValueThepresentvalueofthecashinflowisgreaterthanthecost.Inotherwords,theNetPresentValueispositive,sotheinvestmentshouldbepurchased.NetPresentValueThepresentvNetPresentValueIntheone-periodcase,theformulaforNPVcanbewrittenas:NPV=–Cost+PVIfwehadnotundertakenthepositiveNPVprojectconsideredonthelastslide,andinsteadinvestedour$9,500elsewhereat5percent,ourFVwouldbelessthanthe$10,000theinvestmentpromised,andwewouldbeworseoffinFVterms:$9,500×(1.05)=$9,975
<$10,000NetPresentValueIntheone-pe4.2TheMultiperiodCaseThegeneralformulaforthefuturevalueofaninvestmentovermanyperiodscanbewrittenas:FV=C0×(1+r)TWhere C0iscashflowatdate0,ristheappropriateinterestrate,andTisthenumberofperiodsoverwhichthecashisinvested.4.2TheMultiperiodCaseThegeFutureValueSupposeastockcurrentlypaysadividendof$1.10,whichisexpectedtogrowat40%peryearforthenextfiveyears.Whatwillthedividendbeinfiveyears?FV=C0×(1+r)T$5.92=$1.10×(1.40)5FutureValueSupposeastockcuFutureValueandCompoundingNoticethatthedividendinyearfive,$5.92,isconsiderablyhigherthanthesumoftheoriginaldividendplusfiveincreasesof40-percentontheoriginal$1.10dividend:$5.92>$1.10+5×[$1.10×.40]=$3.30Thisisduetocompounding.FutureValueandCompoundingNoFutureValueandCompounding012345FutureValueandCompounding01PresentValueandDiscountingHowmuchwouldaninvestorhavetosetasidetodayinordertohave$20,000fiveyearsfromnowifthecurrentrateis15%?012345$20,000PVPresentValueandDiscountingHHowLongistheWait?Ifwedeposit$5,000todayinanaccountpaying10%,howlongdoesittaketogrowto$10,000?HowLongistheWait?IfwedepAssumethetotalcostofacollegeeducationwillbe$50,000whenyourchildenterscollegein12years.Youhave$5,000toinvesttoday.Whatrateofinterestmustyouearnonyourinvestmenttocoverthecostofyourchild’seducation? WhatRateIsEnough?About21.15%.AssumethetotalcostofacolCalculatorKeysTexasInstrumentsBA-IIPlusFV=futurevaluePV=presentvalueI/Y=periodicinterestrateP/Ymustequal1fortheI/YtobetheperiodicrateInterestisenteredasapercent,notadecimalN=numberofperiodsRemembertocleartheregisters(CLRTVM)aftereachproblemOthercalculatorsaresimilarinformatCalculatorKeysTexasInstrumenMultipleCashFlows Consideraninvestmentthatpays$200oneyearfromnow,withcashflowsincreasingby$200peryearthroughyear4.Iftheinterestrateis12%,whatisthepresentvalueofthisstreamofcashflows?Iftheissueroffersthisinvestmentfor$1,500,shouldyoupurchaseit?MultipleCashFlows ConsideraMultipleCashFlows01234200400600800178.57318.88427.07508.411,432.93PresentValue<Cost→DoNotPurchaseMultipleCashFlows01234200400Valuing“Lumpy”CashFlowsFirst,setyourcalculatorto1paymentperyear.Then,usethecashflowmenu:CF2CF1F2F1CF0120011,432.930400INPV12CF4CF3F4F316001800Valuing“Lumpy”CashFlowsFirs4.3CompoundingPeriodsCompoundinganinvestmentmtimesayearforTyearsprovidesforfuturevalueofwealth:4.3CompoundingPeriodsCompounCompoundingPeriodsForexample,ifyouinvest$50for3yearsat12%compoundedsemi-annually,yourinvestmentwillgrowtoCompoundingPeriodsForexampleEffectiveAnnualRatesofInterestAreasonablequestiontoaskintheaboveexampleis“whatistheeffectiveannualrateofinterestonthatinvestment?”TheEffectiveAnnualRate(EAR)ofinterestistheannualratethatwouldgiveusthesameend-of-investmentwealthafter3years:EffectiveAnnualRatesofInteEffectiveAnnualRatesofInterestSo,investingat12.36%compoundedannuallyisthesameasinvestingat12%compoundedsemi-annually.EffectiveAnnualRatesofInteEffectiveAnnualRatesofInterestFindtheEffectiveAnnualRate(EAR)ofan18%APRloanthatiscompoundedmonthly.Whatwehaveisaloanwithamonthlyinterestraterateof1?%.Thisisequivalenttoaloanwithanannualinterestrateof19.56%.EffectiveAnnualRatesofInteEARonaFinancialCalculatorkeys:description:[2nd][ICONV]Opensinterestrateconversionmenu[↓][EFF=][CPT]19.56TexasInstrumentsBAIIPlus
[↓][NOM=]18
[ENTER]Sets18APR.[↑][C/Y=]12[ENTER]Sets12paymentsperyearEARonaFinancialCalculatorkContinuousCompoundingThegeneralformulaforthefuturevalueofaninvestmentcompoundedcontinuouslyovermanyperiodscanbewrittenas:FV=C0×erTWhere C0iscashflowatdate0,risthestatedannualinterestrate,Tisthenumberofyears,andeisatranscendentalnumberapproximatelyequalto2.718.exisakeyonyourcalculator.ContinuousCompoundingThegene4.4SimplificationsPerpetuityAconstantstreamofcashflowsthatlastsforeverGrowingperpetuityAstreamofcashflowsthatgrowsataconstantrateforeverAnnuityAstreamofconstantcashflowsthatlastsforafixednumberofperiodsGrowingannuityAstreamofcashflowsthatgrowsataconstantrateforafixednumberofperiods4.4SimplificationsPerpetuityPerpetuityAconstantstreamofcashflowsthatlastsforever0…1C2C3CPerpetuityAconstantstreamofPerpetuity:ExampleWhatisthevalueofaBritishconsolthatpromisestopay£15everyyearforever?Theinterestrateis10-percent.0…1£152£153£15Perpetuity:ExampleWhatistheGrowingPerpetuityAgrowingstreamofcashflowsthatlastsforever0…1C2C×(1+g)3C×(1+g)2GrowingPerpetuityAgrowingstGrowingPerpetuity:ExampleTheexpecteddividendnextyearis$1.30,anddividendsareexpectedtogrowat5%forever.Ifthediscountrateis10%,whatisthevalueofthispromiseddividendstream?0…1$1.302$1.30×(1.05)3$1.30×(1.05)2GrowingPerpetuity:ExampleTheAnnuityAconstantstreamofcashflowswithafixedmaturity01C2C3CTCAnnuityAconstantstreamofcaAnnuity:ExampleIfyoucanafforda$400monthlycarpayment,howmuchcarcanyouaffordifinterestratesare7%on36-monthloans?01$4002$4003$40036$400Annuity:ExampleIfyoucanaff Whatisthepresentvalueofafour-yearannuityof$100peryearthatmakesitsfirstpaymenttwoyearsfromtodayifthediscountrateis9%?
0 1 2 345$100 $100 $100$100$323.97$297.22 WhatisthepresentvalueofGrowingAnnuityAgrowingstreamofcashflowswithafixedmaturity01C2C×(1+g)3C×(1+g)2TC×(1+g)T-1GrowingAnnuityAgrowingstreaGrowingAnnuity:ExampleAdefined-benefitretirementplanofferstopay$20,000peryearfor40yearsandincreasetheannualpaymentbythree-percenteachyear.Whatisthepresentvalueatretirementifthediscountrateis10percent?01$20,0002$20,000×(1.03)40$20,000×(1.03)39GrowingAnnuity:ExampleAdefiGrowingAnnuity:ExampleYouareevaluatinganincomegeneratingproperty.Netrentisreceivedattheendofeachyear.Thefirstyear'srentisexpectedtobe$8,500,andrentisexpectedtoincrease7%eachyear.Whatisthepresentvalueoftheestimatedincomestreamoverthefirst5yearsifthediscountrateis12%?0 1 2 345$34,706.26GrowingAnnuity:ExampleYouar4.5WhatIsaFirmWorth?Conceptually,afirmshouldbeworththepresentvalueofthefirm’scashflows.Thetrickypartisdeterminingthesize,timingandriskofthosecashflows.4.5WhatIsaFirmWorth?ConceQuickQuizHowisthefuturevalueofasinglecashflowcomputed?Howisthepresentvalueofaseriesofcashflowscomputed.WhatistheNetPresentValueofaninvestment?WhatisanEAR,andhowisitcomputed?Whatisaperpetuity?Anannuity?QuickQuizHowisthefuturevaDiscountedCashFlowValuationChapter4DiscountedCashFlowValuationKeyConceptsandSkillsBeabletocomputethefuturevalueand/orpresentvalueofasinglecashfloworseriesofcashflowsBeabletocomputethereturnonaninvestmentBeabletouseafinancialcalculatorand/orspreadsheettosolvetimevalueproblemsUnderstandperpetuitiesandannuitiesKeyConceptsandSkillsBeableChapterOutline4.1Valuation:TheOne-PeriodCase4.2TheMultiperiodCase4.3CompoundingPeriods4.4Simplifications4.5WhatIsaFirmWorth?ChapterOutline4.1Valuation:4.1TheOne-PeriodCaseIfyouweretoinvest$10,000at5-percentinterestforoneyear,yourinvestmentwouldgrowto$10,500.$500wouldbeinterest($10,000×.05)$10,000istheprincipalrepayment($10,000×1)$10,500isthetotaldue.Itcanbecalculatedas:$10,500=$10,000×(1.05)ThetotalamountdueattheendoftheinvestmentiscalltheFutureValue(FV).4.1TheOne-PeriodCaseIfyouFutureValueIntheone-periodcase,theformulaforFVcanbewrittenas:FV=C0×(1+r)TWhereC0iscashflowtoday(timezero),andristheappropriateinterestrate.FutureValueIntheone-periodPresentValueIfyouweretobepromised$10,000dueinoneyearwheninterestratesare5-percent,yourinvestmentwouldbeworth$9,523.81intoday’sdollars.Theamountthataborrowerwouldneedtosetasidetodaytobeabletomeetthepromisedpaymentof$10,000inoneyeariscalledthePresentValue(PV).Notethat$10,000=$9,523.81×(1.05).PresentValueIfyouweretobePresentValueIntheone-periodcase,theformulaforPVcanbewrittenas:WhereC1iscashflowatdate1,andristheappropriateinterestrate.PresentValueIntheone-periodNetPresentValueTheNetPresentValue(NPV)ofaninvestmentisthepresentvalueoftheexpectedcashflows,lessthecostoftheinvestment.Supposeaninvestmentthatpromisestopay$10,000inoneyearisofferedforsalefor$9,500.Yourinterestrateis5%.Shouldyoubuy?NetPresentValueTheNetPreseNetPresentValueThepresentvalueofthecashinflowisgreaterthanthecost.Inotherwords,theNetPresentValueispositive,sotheinvestmentshouldbepurchased.NetPresentValueThepresentvNetPresentValueIntheone-periodcase,theformulaforNPVcanbewrittenas:NPV=–Cost+PVIfwehadnotundertakenthepositiveNPVprojectconsideredonthelastslide,andinsteadinvestedour$9,500elsewhereat5percent,ourFVwouldbelessthanthe$10,000theinvestmentpromised,andwewouldbeworseoffinFVterms:$9,500×(1.05)=$9,975
<$10,000NetPresentValueIntheone-pe4.2TheMultiperiodCaseThegeneralformulaforthefuturevalueofaninvestmentovermanyperiodscanbewrittenas:FV=C0×(1+r)TWhere C0iscashflowatdate0,ristheappropriateinterestrate,andTisthenumberofperiodsoverwhichthecashisinvested.4.2TheMultiperiodCaseThegeFutureValueSupposeastockcurrentlypaysadividendof$1.10,whichisexpectedtogrowat40%peryearforthenextfiveyears.Whatwillthedividendbeinfiveyears?FV=C0×(1+r)T$5.92=$1.10×(1.40)5FutureValueSupposeastockcuFutureValueandCompoundingNoticethatthedividendinyearfive,$5.92,isconsiderablyhigherthanthesumoftheoriginaldividendplusfiveincreasesof40-percentontheoriginal$1.10dividend:$5.92>$1.10+5×[$1.10×.40]=$3.30Thisisduetocompounding.FutureValueandCompoundingNoFutureValueandCompounding012345FutureValueandCompounding01PresentValueandDiscountingHowmuchwouldaninvestorhavetosetasidetodayinordertohave$20,000fiveyearsfromnowifthecurrentrateis15%?012345$20,000PVPresentValueandDiscountingHHowLongistheWait?Ifwedeposit$5,000todayinanaccountpaying10%,howlongdoesittaketogrowto$10,000?HowLongistheWait?IfwedepAssumethetotalcostofacollegeeducationwillbe$50,000whenyourchildenterscollegein12years.Youhave$5,000toinvesttoday.Whatrateofinterestmustyouearnonyourinvestmenttocoverthecostofyourchild’seducation? WhatRateIsEnough?About21.15%.AssumethetotalcostofacolCalculatorKeysTexasInstrumentsBA-IIPlusFV=futurevaluePV=presentvalueI/Y=periodicinterestrateP/Ymustequal1fortheI/YtobetheperiodicrateInterestisenteredasapercent,notadecimalN=numberofperiodsRemembertocleartheregisters(CLRTVM)aftereachproblemOthercalculatorsaresimilarinformatCalculatorKeysTexasInstrumenMultipleCashFlows Consideraninvestmentthatpays$200oneyearfromnow,withcashflowsincreasingby$200peryearthroughyear4.Iftheinterestrateis12%,whatisthepresentvalueofthisstreamofcashflows?Iftheissueroffersthisinvestmentfor$1,500,shouldyoupurchaseit?MultipleCashFlows ConsideraMultipleCashFlows01234200400600800178.57318.88427.07508.411,432.93PresentValue<Cost→DoNotPurchaseMultipleCashFlows01234200400Valuing“Lumpy”CashFlowsFirst,setyourcalculatorto1paymentperyear.Then,usethecashflowmenu:CF2CF1F2F1CF0120011,432.930400INPV12CF4CF3F4F316001800Valuing“Lumpy”CashFlowsFirs4.3CompoundingPeriodsCompoundinganinvestmentmtimesayearforTyearsprovidesforfuturevalueofwealth:4.3CompoundingPeriodsCompounCompoundingPeriodsForexample,ifyouinvest$50for3yearsat12%compoundedsemi-annually,yourinvestmentwillgrowtoCompoundingPeriodsForexampleEffectiveAnnualRatesofInterestAreasonablequestiontoaskintheaboveexampleis“whatistheeffectiveannualrateofinterestonthatinvestment?”TheEffectiveAnnualRate(EAR)ofinterestistheannualratethatwouldgiveusthesameend-of-investmentwealthafter3years:EffectiveAnnualRatesofInteEffectiveAnnualRatesofInterestSo,investingat12.36%compoundedannuallyisthesameasinvestingat12%compoundedsemi-annually.EffectiveAnnualRatesofInteEffectiveAnnualRatesofInterestFindtheEffectiveAnnualRate(EAR)ofan18%APRloanthatiscompoundedmonthly.Whatwehaveisaloanwithamonthlyinterestraterateof1?%.Thisisequivalenttoaloanwithanannualinterestrateof19.56%.EffectiveAnnualRatesofInteEARonaFinancialCalculatorkeys:description:[2nd][ICONV]Opensinterestrateconversionmenu[↓][EFF=][CPT]19.56TexasInstrumentsBAIIPlus
[↓][NOM=]18
[ENTER]Sets18APR.[↑][C/Y=]12[ENTER]Sets12paymentsperyearEARonaFinancialCalculatorkContinuousCompoundingThegeneralformulaforthefuturevalueofaninvestmentcompoundedcontinuouslyovermanyperiodscanbewrittenas:FV=C0×erTWhere C0iscashflowatdate0,risthestatedannualinterestrate,Tisthenumberofyears,andeisatranscendentalnumberapproximatelyequalto2.718.exisakeyonyourcalculator.ContinuousCompoundingThegene4.4SimplificationsPerpetuityAconstantstreamofcashflowsthatlastsforeverGrowingperpetuityAstreamofcashflowsthatgrowsataconstantrateforeverAnnuityAstreamofconstantcashflowsthatlastsforafixednumberofperiodsGrowingannuityAstreamofcashflowsthatgrowsataconstantrateforafixednumberofperiods4.4SimplificationsPerpetuityPerpetuityAconstantstreamofcashflowsthatlastsforever0…1C2C3CPerpetuityAconstantstreamofPerpetuity:ExampleWhatisthevalueofaBritishconsolthatpromisestopay£15everyyearforever?Theinterestrateis10-percent.0…1£152£153£15Perpetuity:ExampleWhatistheGrowingPerpetuityAgrowingstreamofcashflowsthatlastsforever0…1C2C×(1+g)3C×(1+g)2GrowingPerpetuityAgrowingstGrowingPerpetuity:ExampleTheexpecteddividendnextyearis$1.30,anddividendsareexpectedtogrowat5%forever.Ifthediscountrateis10%,whatisthevalueofthispromiseddividendstream?0…1$1.302$1.30×(1.05)3$1.30×(1.05)2GrowingPer
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山西省建筑安全員A證考試題庫(kù)
- 2025云南省建筑安全員-A證考試題庫(kù)附答案
- 蘇州城市學(xué)院《林木分子生物學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 海南師范大學(xué)《演藝娛樂(lè)經(jīng)營(yíng)管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 華南理工大學(xué)《創(chuàng)業(yè)教育》2023-2024學(xué)年第二學(xué)期期末試卷
- 新余學(xué)院《實(shí)踐中的馬克思主義新聞?dòng)^》2023-2024學(xué)年第二學(xué)期期末試卷
- 青島幼兒師范高等??茖W(xué)校《三維造型設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 甘孜職業(yè)學(xué)院《汽車運(yùn)用工程1》2023-2024學(xué)年第二學(xué)期期末試卷
- 鄭州理工職業(yè)學(xué)院《裝飾工程預(yù)決算A》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年安徽省建筑安全員-B證(項(xiàng)目經(jīng)理)考試題庫(kù)
- 【美術(shù)】第一單元第1課《情感的抒發(fā)與理念的表達(dá)》課件 2023-2024學(xué)年人教版初中美術(shù)八年級(jí)下冊(cè)
- 體育與健康(水平二)《花樣跳繩一級(jí)動(dòng)作(18課時(shí))》大單元教學(xué)計(jì)劃
- 2024年濟(jì)南工程職業(yè)技術(shù)學(xué)院高職單招(英語(yǔ)/數(shù)學(xué)/語(yǔ)文)筆試歷年參考題庫(kù)含答案解析
- 癔癥護(hù)理查房
- 中國(guó)民航大學(xué)開(kāi)題報(bào)告模板
- 人民幣銀行結(jié)算賬戶管理系統(tǒng)培訓(xùn)課件
- 鋼結(jié)構(gòu)施工安全培訓(xùn)
- 紅木家具通用技術(shù)條件解析
- 超市商品結(jié)構(gòu)圖
- 沃爾沃S60L 2014款說(shuō)明書(shū)
- 汽車零部件噴漆項(xiàng)目分析報(bào)告
評(píng)論
0/150
提交評(píng)論