![未來能源研究所-《降低通貨膨脹法案》中清潔氫氣生產(chǎn)的激勵措施(英)-2022.11-33正式版_第1頁](http://file4.renrendoc.com/view/5f937c8bf6228e617b20ef46d99adcb5/5f937c8bf6228e617b20ef46d99adcb51.gif)
![未來能源研究所-《降低通貨膨脹法案》中清潔氫氣生產(chǎn)的激勵措施(英)-2022.11-33正式版_第2頁](http://file4.renrendoc.com/view/5f937c8bf6228e617b20ef46d99adcb5/5f937c8bf6228e617b20ef46d99adcb52.gif)
![未來能源研究所-《降低通貨膨脹法案》中清潔氫氣生產(chǎn)的激勵措施(英)-2022.11-33正式版_第3頁](http://file4.renrendoc.com/view/5f937c8bf6228e617b20ef46d99adcb5/5f937c8bf6228e617b20ef46d99adcb53.gif)
![未來能源研究所-《降低通貨膨脹法案》中清潔氫氣生產(chǎn)的激勵措施(英)-2022.11-33正式版_第4頁](http://file4.renrendoc.com/view/5f937c8bf6228e617b20ef46d99adcb5/5f937c8bf6228e617b20ef46d99adcb54.gif)
![未來能源研究所-《降低通貨膨脹法案》中清潔氫氣生產(chǎn)的激勵措施(英)-2022.11-33正式版_第5頁](http://file4.renrendoc.com/view/5f937c8bf6228e617b20ef46d99adcb5/5f937c8bf6228e617b20ef46d99adcb55.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
IncentivesforCleanHydrogenProductionintheInflationReductionActAlanKrupnickandAaronBergmanReport22-13November2022IncentivesforCleanHydrogenProductionintheInflationReductionAct AAbouttheAuthorsAlanKrupnickisaseniorfellowatResourcesfortheFutureandanexpertontheoilandgassector,reducinggreenhousegasemissionsfromthisandtheindustrialsectors,andcost-benefitanalysis.Inparticular,Krupnick’srecentresearchfocusesongreenpublicprocurement,decarbonizedhydrogenandtaxcredits,anddevelopingmarketsforgreennaturalgas.HisportfolioalsoincludesguidingthevalueofinformationagendacoveredbyourVALUABLESinitiativewithNASA,thevaluationofreducingasthmarisks,estimatingthevalueofstatisticallife,andissuesofregulatoryreform.AaronBergmanisafellowatResourcesfortheFuture.PriortojoiningRFF,hewastheLeadforMacroeconomicsandEmissionsattheEnergyInformationAdministration(EIA),managingEIA’smodelinginthoseareas.BeforeworkingatEIA,BergmanspentoveradecadeinthepolicyofficeattheDepartmentofEnergy,workingonabroadarrayofclimateandenvironmentalpolicies.BergmanhasworkedintheWhiteHouseattheOfficeofScienceandTechnologyPolicy,managingtheQuadrennialEnergyReviewandhandlingthemethanemeasurementportfolio,andattheCouncilonEnvironmentalQuality,workingoncarbonregulation.Bergmanenteredthefederalgovernmentin2009asaScienceandTechnologyPolicyFellowwiththeAmericanAssociationfortheAdvancementofScience,afterworkinginhighenergyphysics.AboutRFFResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutioninWashington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFiscommittedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.TheviewsexpressedherearethoseoftheindividualauthorsandmaydifferfromthoseofotherRFFexperts,itsofficers,oritsdirectors.SharingOurWorkOurworkisavailableforsharingandadaptationunderanAttribution-NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyandredistributeourmaterialinanymediumorformat;youmustgiveappropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynotapplyadditionalrestrictions.Youmaydosoinanyreasonablemanner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethematerialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit/licenses/by-nc-nd/4.0/.ResourcesfortheFuture iContents1.Introduction12.HydrogenProductionBackground22.1.ProducingHydrogenfromHydrocarbons22.2.ProducingHydrogenfromWater43.TaxCreditChangesintheIRA43.1.TheHydrogenTaxCredit43.2.TheCarbonSequestrationTaxCredit63.3.TheImplicitCarbonPrice63.4.LifeCycleGreenhouseGasEmissions94.TheCostsandEmissionsofHydrogenProduction114.1.TheCostsofHydrogenProduction124.2.TheEmissionsfromHydrogenProduction145.TheImpactofIRATaxCreditsontheCostofHydrogen155.1.TheValueofthePTCversustheITC155.2.TheImpactofthePTC165.3.PerverseIncentivesandthe45QTaxCredit196.Sensitivities206.1.EmissionsRateSensitivities206.2.FuelPriceSensitivities227.TheHydrogenEconomy28IncentivesforCleanHydrogenProductionintheInflationReductionAct ii1.IntroductionCleanhydrogencanbeakeycomponenttodecarbonization,particularlyintheindustrialsector.Beyonditscurrentuseinchemicalsandrefining,hydrogenhaspotentialnewandexpandedusesin,forinstance,processheat,ironandsteel,electricitygenerationandtransportation.However,currenthydrogenproductiontechnologiesyieldsignificantcarbonemissions,andlittleeconomicincentivehasexistedtoexpandtheuseofhydrogentonewareas.Butthathasbeguntochange,withtheUSCongressrecentlyplacinglargebetsonafuturehydrogeneconomy.Lastyear’sInfrastructure,InvestmentandJobsAct(IIJA)contains$9.5billionfundingforhydrogen,including$8billionforhydrogenhubs.Andthisyear’sInflationReductionAct(IRA)containstwoprovisionsthatwillsubsidizecleanhydrogenproduction.Thefirstisanewtaxcredit(section45Vofthetaxcode)wherethevalueofthecreditisbasedonlifecycleemissions.Thesecondisasubstantialincreaseinthevalueoftheexistingtaxcreditforcarbonsequestration(section45Qofthetaxcode),whichisusedtomake“blue”hydrogen.Eachofthesetaxcreditscanreducethepricedifferencebetweencleanhydrogenandmorecarbon-intensivealternatives.Tobetterunderstandthecost-effectivenessofthesepolicies,thispricedifferencecanbeconvertedintoanimplicitcarbonprice.Aswewillsee,thevaluessoobtainedaresignificantlyhigherthanmanyestimatesofthesocialcostofcarbonandmaythusappearuneconomic.However,thegoalofthesetaxcreditsisnotsolelytocorrectforthelackofapriceoncarbonbutalsotoaidthedeploymentofnascenthydrogentechnologies.Suchdeploymentcanhavespillovereffects,disseminatingknowledgeandpotentiallyloweringcostsinthefuture,anadditionalexternalitythat,althoughdifficulttoquantify,mayjustifythehigherimplicitcarbonprices.Thesetaxcreditshavedifferentimpactsdependingontheformofhydrogenproduction.Fossil-fuelbasedproductiongenerallyusesnaturalgas(althoughitcanuseotherfuelsaswediscusslater).Thisprocessproducesgreenhousegasemissionsfromthecarbondioxidereleasedasthehydrogenisextractedfromthenaturalgas(orotherhydrocarbon).Tobecleanhydrogen,theseemissionsmustbecaptured.Ontheotherhand,electrolysis,theproductionofhydrogenfromwaterusingelectricity,producesnodirectgreenhousegasemissions.However,electrolysisconsumeslargeamountsofelectricitythatcanleadtobothhighcostsandhighlifecycleemissionsiftheelectricityispurchasedonthewholesalemarket.Costscouldbelowered,however,byusinglowercostelectricity,eitherthroughadirectconnectiontoageneratororbyonlyproducinghydrogenwhenthepriceofelectricityislow.Bothformsofhydrogenproductionarepotentiallyeligibleforthe45Vtaxcredit,buttheymustdemonstratelowlifecycleemissionstodoso,withthemagnitudeofthecreditdependingonthelevelofemissions.Inthecaseoffossil-fuelbasedproduction,beyondthedirectemissions,thelargestcomponentofthelifecycleemissionsisupstreammethaneleakage;forelectrolysis,itistheemissionsassociatedwithelectricityproduction.TheTreasuryDepartmentwillhavetoissuearegulationonhowtocalculatetheselifecycleemissions,whichwillhaveamajorimpactonthesubsidiesavailabletohydrogenproducersandthecompetitivenessofvariousformsofhydrogenproduction.IncentivesforCleanHydrogenProductionintheInflationReductionAct 1Incontrasttothe45Vtaxcredit,onlyhydrogenproducersusingcarboncapture,utilizationandstorage(CCUS)areeligibleforthe45Qtaxcredit.Thistaxcreditisavailableirrespectiveofthelifecycleemissionsand,aswewillsee,canbemorevaluablethanthe45Vtaxcredit.Producersarenotallowedtotakebothtaxcredits.WewillanalyzetheimpactsofthesetaxcreditsonthecostsofhydrogenproductionusingasetofhydrogenproductionmodelsfromtheNationalRenewableEnergyLaboratory(NREL).Wewillseethatthe45Qtaxcreditissufficienttomakesomeformsoffossilfuel–basedhydrogenproductioncompetitivewithcurrenthigh-emissionproductiononalevelizedcostbasis.Thehighcostofgridelectricityandtheassociatedemissions,ontheotherhand,makeithardforelectrolysistocompete.However,electrolyzersthatsourcecleanerandcheaperelectricitycanqualifyforhighlevelsofthe45Vtaxcreditandcompetewithfossil-fuelbasedhydrogenproduction.Inthelongrun,costsforelectrolyzersareexpectedtodecrease,andthegridshouldbelesscarbonintensive,makingelectrolyzerscompetitivemorebroadly.Inthisreport,wewillreviewvariousformsofhydrogenproductionandthechangestothetaxlawmadebytheInflationReductionAct.Wewillcalculatetheimplicitcarbonpricesanddiscussthecalculationoflifecycleemissions.Next,usingtheNRELmodels,wewilldiscusstheimpactsofthetaxcreditsonthelevelizedandmarginalcostsofhydrogenproductionandseehowtheydependonupstreammethaneleakageratesandthecarbonintensityofelectricityproduction.Wewillalsoexamineindetailhowtherelativecompetitivenessofthevariousformsofproductiondependsonnaturalgasandelectricityprices.Weconcludewithadiscussionofthebroaderhydrogeneconomy.2.HydrogenProductionBackgroundThetwoprimarymeansofhydrogenproductionusehydrocarbons(i.e.,fossilfuelsorbiomass)asafeedstockorsplitwaterusingelectricitythroughelectrolysis.Productionusinghydrocarbonsusesaseriesofchemicalreactionstoreleasethehydrogen,wheretheremainingcarbonatomsareusuallyreleasedascarbondioxide.Electrolysis,ontheotherhand,hasnodirectgreenhousegasemissionsbutrequiressignificantamountsofelectricity.2.1.ProducingHydrogenfromHydrocarbonsMosthydrogenproducedgloballyisthroughsteammethanereforming(SMR)whichfallsintothefirstcategory.SMRtakesmethane,theprimarycomponentofnaturalgas,andheatsitinthepresenceofsteamtocreateamixtureofcarbonmonoxideandhydrogen:CH4+H2OCO+3H2ResourcesfortheFuture 2Inadditiontoconsumingnaturalgasasafeedstock,thisreactionrequiresheatthatcanbeproducedbythecombustionofadditionalnaturalgas.Toproduceadditionalhydrogen,thereformingreactionisusuallyfollowedbyawater-gas-shiftreactionthatconvertsthecarbonmonoxidetocarbondioxideandadditionalhydrogen:CO+H2OCO2+H2Thisreactionisexothermic(i.e.,producesenergy),asopposedtotheSMRreaction,whichisendothermic(i.e.,usesenergy).Anotherhydrogenproductiontechnologyusingnaturalgasisautothermalreforming(ATR),whichmixesmethanewithoxygentoproduceheat,hydrogenandcarbonmonoxidethroughapartialoxidationreaction:2CH4+O22CO+4H2Theheatfromthisreactioncandrivethesteammethanereformingreactionabove.Theresultinggasisthenrunthroughawater-gasshiftreactiontoproducemorehydrogen.AnadvantageofATRoverSMRisthatitrequiresnoadditionalnaturalgas,asthepartialoxidationreactionprovidestheheat.ATRisnotwidelycommercialized.Hydrogenalsocanbeproducedfromcoalorbiomassthroughgasification,whichconvertsthefueltoamixtureofmostlycarbonmonoxideandhydrogengaswithsomeresidualmethaneandcarbondioxide,oftencalled“syngas.”1Afurtherwater-gas-shiftreactionproducesadditionalhydrogen.Gasifiersarecomplex,expensiveandultimatelyproducemorecarbondioxideemissionsthanSMRorATR.Inadditiontotheirdirectemissions,theseformsofhydrogenproductionhavelifecyclegreenhousegasemissionsfromupstreamfuelproduction,processinganddistribution.Theseincludethereleaseofmethanefromupstreamnaturalgasandcoalproductionandtransportationandtheemissionsassociatedwithanyelectricityused.Astraightforwardwaytolowertheemissionsfromthesetechnologiesistocapturethecarbondioxide,eitherfromtherelativelypureprocessemissionstreamorfromtheentireplant,resultingincarboncaptureofroughly55–70percentandupwardsof90percent,respectively.However,additionalenergyisrequiredtorunthecaptureequipment,partlymitigatingtheemissionsreductions.Thereareavarietyofmorenascenttechnologiestoproducehydrogenfromhydrocarbonsthatwewillnotdiscusshere./research/Coal/energy-systems/gasification/gasifipedia/intro-to-gasificationIncentivesforCleanHydrogenProductionintheInflationReductionAct 32.2.ProducingHydrogenfromWaterTheothermajormethodofproducinghydrogenisthroughelectrolysiswhereelectricityisusedtoseparatethehydrogenfromtheoxygeninwater:2H2O+electricity2H2+O2Whilelittlehydrogenisproducedthiswaytodaybecauseofitssignificantelectricityconsumptionandhighcost,electrolysishastheadvantageofproducingnodirectgreenhousegasemissions.Thethreemainelectrolysistechnologiesusedtodayarealkalineelectrolysis,protonexchangemembrane(PEM)electrolysisandsolidoxideelectrolysis.Thesetechnologiesdifferintheiruseofcatalysts,solutionsandinotheraspects,whilehavingthesamenetchemicalreaction.Importantly,solidoxideelectrolysis,whichhasnotyetbeencommercialized,requireshightemperaturesand,consequently,aheatsource.Othertechnologies,suchasphotoelectrochemicalwatersplitting,areunderdevelopment.2Whilethedirectgreenhousegasemissionsfromelectrolysisarezero,thelifecycleemissionscanbesignificantiftheelectricityconsumedhasahighcarbonintensity.Intheshortterm,upstreamemissionscanbereducedbyusingzero-emissionelectricity.Inthelongterm,weexpectthecarbonintensityoftheelectricgridtodecrease.TheBidenadministrationhassetagoalofazero-carbongridby2035.3.TaxCreditChangesintheIRAThetwoimportanttaxcreditsintheIRAforhydrogenarethenewtaxcreditforhydrogenproductionandtheincreaseinvalueoftheexistingcreditforcarbonsequestration.Wediscusseachoftheseprovisionsindetailinthissectionbeforeturningtotheireffectonhydrogenproduction.3.1.TheHydrogenTaxCreditTheIRAcreatesanewtaxcredit(26USC45V–45Vinwhatfollows)tosubsidizetheproductionof“clean”hydrogen.Hydrogenproducershavetheoptionofeitherreceivingacreditequaltoaspecifieddollarvalueperkilogramofhydrogenproduced(aproductiontaxcredit;PTC)orataxcreditequaltoaspecifiedfractionoftheircapitalexpenses(aninvestmenttaxcredit;ITC).Thesevaluesdependonthelifecyclegreenhousegasemissionsassociatedwiththehydrogenproductionandwhetherornotthehydrogenproducercomplieswiththeprevailingwageandapprenticeship/eere/fuelcells/hydrogen-production-photoelectrochemical-water-splittingResourcesfortheFuture 4requirementsinthebill.3Table1liststhevaluesforcomplyingproducers.Ifaproducerisnotincompliancewiththeserequirements,thecreditisreducedbyafactoroffive.Sincetheseprojectsmayalsobeeligiblefortax-exemptbonds,ifaprojectreceivessuchfinancing,theamountofcreditisreducedforboththeITCandPTC.Table1.Valuesofthe45VHydrogenInvestmentTaxCreditandProductionTaxCreditLifeCycleEmissions(kgCO2e/kgH2)ITCPercentagePTCValue(2022$/kgH2)4–2.56percent0.602.5–1.57.5percent0.751.5–0.4510percent1.000.45–030percent3.00InthecaseofthePTC,thetaxcreditisreceivedfor10yearsafterthefacilityisplacedintoservice.Nofacilitythatbeginsconstructionafter2032qualifies,butmodificationstofacilitiesinservicebefore2023canqualify.Nofacilitymaytakeboththe45Vandcarboncaptureandsequestrationtaxcredits.However,onecansimultaneouslytakethe45Vtaxcreditandmostoftheothertaxcreditsforcleanenergygeneration.TheIRAalsocontainsimportantprovisionstolettaxpayersmonetizethetaxcredit,allowingvarioustax-exemptentitiestoreceiveapaymentinsteadofataxcreditandallowingalltaxpayerstoreceivesuchapaymentforthePTCforthefirstfiveyears.4Inaddition,foralltaxpayers,thecreditistransferrableinreturnforcash,whichallowsmonetizationwithfewertransactioncostsascomparedtobringinginanoutsideinvestorwithtaxappetite(i.e.,apositivetaxbill).Unlikemanyothertaxcreditsinthisbill,therearenobonusesfordomesticcontentordevelopmentinenergycommunities.TheprevailingwagerequirementisthattheconstructionofthefacilityandanysubsequentalterationorrepairmustpayworkersatleastthelocalprevailingwagesforasimilaractivityasdeterminedbytheSecretaryofLaborundertheDavis-BaconAct.Withrespecttoapprenticeship,theIRArequiresthatapprenticessupplyupto15percentofthelaborhours,dependingonthefirstyearofconstruction.Theseapplytoanyfacilityoralterationorrepairofacomponentofafacilitythatbeginsconstruction60daysaftertheSecretaryoftheTreasuryissuesregulationsontheserequirements.Manydevelopersdonotpaytaxesinearlyyearseitherbecauseoftax-exemptstatusorbecauseofotherdeductions,suchasaccelerateddepreciation,andsocannottakeimmediateadvantageofthetaxcredit.IncentivesforCleanHydrogenProductionintheInflationReductionAct 53.2.TheCarbonSequestrationTaxCreditTheIRAalsosignificantlyincreasesthelevelofthetaxcreditforcarbonoxidesequestration.ThistaxcreditwascreatedintheEnergyImprovementandExtensionActof2008andsubsequentlymodifiedbytheBipartisanBudgetAct,whichincreasedthelevelofthecredit,replacedthepriortonnagecapwithafixeddurationof12yearsandexpandedeligibilitytoincludedirectaircapturewhilesettingvariouscapturethresholdsforqualificationdependingonthetypeoffacility.Inaddition,theBipartisanBudgetActaddedcarbonmonoxideasaneligiblegas,exceptinthecaseofdirectaircapture.WithmanyinindustryarguingthattheseincentivesweretoosmalltofosterwidespreaduseofCCUS,theIRAfurtherincreasedthelevelofthecreditforfacilitiesbuiltafterthepassageoftheBipartisanBudgetActtoaflat$85/tonneforsequesteredcarbondioxideand$60/tonneforutilizedcarbondioxide,includingforEOR,replacingthelinearlyrisingscaleintheBipartisanBudgetAct.5Inaddition,directaircaptureisgivenacreditof$180/tonneand$130/tonneforsequesteredandutilizedcarbon,respectively.However,muchlikeinthe45Vtaxcredit,thesevaluesaredividedbyfiveifprevailingwageandapprenticeshiprequirementsarenotmet.TheIRAalsochangestheeligibilityrequirementsasfollows:Adirectaircapturefacilitymustcaptureatleast1,000metrictonnesperyear.Anelectricgeneratormustcaptureatleast18,750metrictonnesperyearandhaveadesignedcapturerateofatleast75percentwithrespecttoabaseline.Anyotherfacilitymustcaptureatleast12,500metrictonnesperyear.Thesamereductionsfortax-exemptbondsasforthe45VPTCandthesameprovisionsthatallowdirectpaymentsalsoapplytothe45Qcredit.3.3.TheImplicitCarbonPriceThesesubsidiesreducethepricedifferencebetweencleanhydrogenandadirtieralternative.Theydosobydecreasingthepriceofthecleanenergy,incontrasttoacarbontax,whichincreasesthepriceofmorecarbon-intensiveenergy.Inthisway,onecanconvertthesubsidyintoanequivalentcarbonpriceasfollows.AssumewehaveadirtysourceofenergywithemissionsYd,andacleanenergysourcewithemissionsYc.Iftheper-unitsubsidyforcleaniss,thentofindtheequivalenttax,t,weneedtosolves=t(Yd-Yc)5 Thesevaluesarenominaluntil2026andthenrisewithinflation.ResourcesfortheFuture 6Thiscanberearrangedtogivet=s/(Yd-Yc),whichistheper-unitsubsidycostdividedbytheper-unitabatement.Whilewewillreportimpliedcarbonpricesinanumberofabatementscenarios,thesearenotmeasuresoftheabatementcostinthosescenarios.Instead,iftheactualabatementcostislowerthantheimpliedcarbonprice,thenitiseconomicforthechangetooccur.Inthiscase,theimpliedcarbonpriceisakindofmeasureofthecost-effectivenessofthepolicy.Tocalculatetheimplicitcarbonpriceforcurrentusesofhydrogen,wecancomparewithexistinghydrogenproduction,whichisnearlyalwaysanSMRprocess.Thishasalifecycleemissionsrateofroughly11.2kgCO2e/kgH2inthesemodels.ComparingwiththeemissionsratesinTable1givesimplicitcarbonpricesrangingfrom$84/tonneforhydrogenwithanemissionsrateof4kgCO2e/kgH2to$280/tonneforhydrogenwithanemissionsrateof0.45kgCO2e/kgH2.Inotherenduses,hydrogenmaybecompetingwithfuelssuchasnaturalgasinprocessheatormotorgasolineordieselfuelintransportation.Thecorrectunitstousearetheenergyservicesprovided.Forprocessheat,theimportantquantityisthepricetodeliveraJouleofheat.6Fornaturalgas,thissubsidyislargerthanforexistinghydrogenproduction,rangingfrom$134/tonneCO2eforhydrogenwithanemissionsrateof4kgCO2e/kgH2to$374/tonneCO2eforhydrogenwithanemissionsrateof0.45kgCO2e/kgH2.Fortransportation,thecorrectunitwilldependontheenduse.Forfreight,thisislikelyton-miles.Whilewedonothavedatafortheefficiencyofhydrogeninthatcontext,wecanlookatitsuseinpassengerfuelcellvehicles,wheretheappropriateunitisvehiclemilestraveled.The2022ToyotaMiraihasafuelefficiencyof72milesperkgH2.7Wecomparewithagasolinefueledcarthatachieves25mpg.Thisleadstoanimplicitcarbonpriceof$28–121/tonne.Foracarat55mpg,theimplicitcarbonpriceswillmorethandouble.Notethatthisdoesnotmeanthatthesubsidyismorelikelytoleadtoabatementinthatscenarioastheabatementcostindollarspertonnewillalsoincreasebecausetherearefeweremissionstobeabated.Figure1showsallofthesevalues.Thiscalculationignoresthatdifferentfuelscandeliverdifferentheatquality,suchasvaryingtemperature./feg/fcv_sbs.shtmlIncentivesforCleanHydrogenProductionintheInflationReductionAct 7Figure1.ImplicitCarbonTaxfor45VTaxCreditbyEndUseUnlikeacarbontax,whereeachtonneofgreenhousegasesemittedistaxed,the45Qpolicyinsteadsubsidizestheamountofsequesteredorutilizedemissions.Thus,whencomparingthepricedifferencebetweenthesameformofproductionwithandwithoutCCS,theimplicitcarbontaxisexactlythevalueofthesubsidy,whichis$85/tonneforsequesteredcarbondioxide.However,ifweinsteadcomparetonaturalgasusedforprocessheat(usingunitsofJoules),thatsubsidyincreasesto$169/tonne.Atthehighendoftheseranges,thevaluesarehigherthantheUSgovernment’sofficialof$51/tonne.TheyarealsohigherthanRFF’srecentlypublishedcentralvalueof$185/tonnealthoughnotmarkedlyso,andwellwithinthe95percentconfidenceintervalsandinlinewithhigherestimatesintheliterature.8Thismeansthat,evaluatedpurelyonthebasisofthebenefitsofthesepolicieswithrespecttocarbonabatement,theymaylookoverlyexpensive.However,asnotedabove,animportantexternalityexistsbeyondclimatechange:thepotentialspilloversfromtechnologydemonstrationanddeployment.Whilesuchanexternalityisextremelydifficulttoquantify,thelargersubsidiesherecouldpotentiallybejustifiedinthebroadercontextoftryingtocreateacleanhydrogeneconomy,aswediscusslater./articles/s41467-021-24487-wResourcesfortheFuture 83.4.LifeCycleGreenhouseGasEmissionsSincethevalueofthe45Vtaxcreditvariessignificantlydependingonthelifecycleemissions,howthisisdefinedhasverylargeimplicationsforthepotentialcompetitivenessofdifferentmeansofhydrogenproduction.Thiscanbeacomplexarea,sowequotetherelevantIRAprovisions(section13204):“(1)LIFECYCLEGREENHOUSEGASEMISSIONS.—INGENERAL.—Subjecttosubparagraph(B),theterm‘lifecyclegreenhousegasemissions’hasthesamemeaninggivensuchtermundersubparagraph(H)ofsection211(o)(1)oftheCleanAirAct(42U.S.C.7545(o)(1)),asineffectonthedateofenactmentofthissection.GREETMODEL.—Theterm‘lifecyclegreenhousegasemissions’shallonlyincludeemissionsthroughthepointofproduction(well-to-gate),asdeterminedunderthemostrecentGreenhousegases,RegulatedEmissions,andEnergyuseinTransportationmodel(commonlyreferredtoasthe‘GREETmodel’)developedbyArgonneNationalLaboratory,orasuccessormodel(asdeterminedbytheSecretary).”Section211(o)(1)oftheCleanAirActreferstotheRenewableFuelStandard(RFS):“Theterm‘lifecyclegreenhousegasemissions’meanstheaggregatequantityofgreenhousegasemissions(includingdirectemissionsandsignificantindirectemissionssuchassignificantemissionsfromlandusechanges),asdeterminedbytheAdministrator,relatedtothefullfuellifecycle,includingallstagesoffuelandfeedstockproductionanddistribution,fromfeedstockgenerationorextractionthroughthedistributionanddeliveryanduseofthefinishedfueltotheultimateconsumer,wherethemassvaluesforallgreenhousegasesareadjustedtoaccountfortheirrelativeglobalwarmingpotential.”Thisleavesanumberofissuesunresolved.WhiletheEPAhasissuedmanyrulemakingsondeterminingthelifecycleemissionsforvariousfuelsundertheRFS,theIRAgivestheSecretaryofTreasurydirectiontoissueitsownregulationsondetermininglifecyclegreenhousegasemissionswithinoneyearafte
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度餐廳酒樓員工福利與激勵計劃合同
- 2025年度物流運輸安全風(fēng)險評估合同范本
- 2025年度退休返聘員工知識產(chǎn)權(quán)保護(hù)及使用合同
- 2025年度年度炊事員團(tuán)隊建設(shè)聘用合同
- 2025年度共享辦公空間租賃合同提前解除及會員權(quán)益協(xié)議
- 2025-2030年可見光干涉合成孔徑望遠(yuǎn)鏡企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 2025至2030年中國磁性水平尺數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年電焊機安全防觸電保護(hù)器項目投資價值分析報告
- 幕墻工程招投標(biāo)與合同管理考核試卷
- 2025年嵌入式安全型玻璃雙灶項目可行性研究報告
- 國家安全生態(tài)安全教育課件
- 【鋼鐵冶煉】-銻冶煉先關(guān)工藝
- 漸變方格模板
- 大學(xué)生職業(yè)生涯發(fā)展規(guī)劃知到章節(jié)答案智慧樹2023年齊魯師范學(xué)院
- 環(huán)境因素匯總識別及評價表(保衛(wèi)部 )
- GB/T 9123.1-2000平面突面鋼制管法蘭蓋
- 消防安全風(fēng)險辨識清單
- 元代文學(xué)-緒論課件
- 2023年版勞動實踐河北科學(xué)技術(shù)出版社一年級下冊全冊教案
- 方案報審表(樣表)
- pp顧問的常見面試問題
評論
0/150
提交評論