版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點為,準(zhǔn)線為,,是拋物線上的兩個動點,且滿足,設(shè)線段的中點在上的投影為,則的最大值是()A. B. C. D.2.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個單位長度而得到,則函數(shù)的解析式為()A. B.C. D.3.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.4.雙曲線的左右焦點為,一條漸近線方程為,過點且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.25.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.6.若單位向量,夾角為,,且,則實數(shù)()A.-1 B.2 C.0或-1 D.2或-17.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.8.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標(biāo)原點),則雙曲線的離心率為()A. B. C. D.9.已知是函數(shù)圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.10.體育教師指導(dǎo)4個學(xué)生訓(xùn)練轉(zhuǎn)身動作,預(yù)備時,4個學(xué)生全部面朝正南方向站成一排.訓(xùn)練時,每次都讓3個學(xué)生“向后轉(zhuǎn)”,若4個學(xué)生全部轉(zhuǎn)到面朝正北方向,則至少需要“向后轉(zhuǎn)”的次數(shù)是()A.3 B.4 C.5 D.611.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.12.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),則______.14.三對父子去參加親子活動,坐在如圖所示的6個位置上,有且僅有一對父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).15.在中,,,則_________.16.設(shè)平面向量與的夾角為,且,,則的取值范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),,.函數(shù)的導(dǎo)函數(shù)在上存在零點.求實數(shù)的取值范圍;若存在實數(shù),當(dāng)時,函數(shù)在時取得最大值,求正實數(shù)的最大值;若直線與曲線和都相切,且在軸上的截距為,求實數(shù)的值.18.(12分)已知函數(shù).(1)求證:當(dāng)時,;(2)若對任意存在和使成立,求實數(shù)的最小值.19.(12分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點為極點,以軸正半軸為極軸并取相同的單位長度建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程,并說明其表示什么軌跡;(2)若直線的極坐標(biāo)方程為,求曲線上的點到直線的最大距離.20.(12分)已知數(shù)列,其前項和為,若對于任意,,且,都有.(1)求證:數(shù)列是等差數(shù)列(2)若數(shù)列滿足,且等差數(shù)列的公差為,存在正整數(shù),使得,求的最小值.21.(12分)為了加強環(huán)保知識的宣傳,某學(xué)校組織了垃圾分類知識竟賽活動.活動設(shè)置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷將每張卡片放入對應(yīng)的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內(nèi)的人數(shù);(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數(shù),求的分布列和數(shù)學(xué)期望.22.(10分)已知橢圓過點,設(shè)橢圓的上頂點為,右頂點和右焦點分別為,,且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線交橢圓于,兩點,設(shè)直線與直線的斜率分別為,,若,試判斷直線是否過定點?若過定點,求出該定點的坐標(biāo);若不過定點,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
試題分析:設(shè)在直線上的投影分別是,則,,又是中點,所以,則,在中,所以,即,所以,故選B.考點:拋物線的性質(zhì).【名師點晴】在直線與拋物線的位置關(guān)系問題中,涉及到拋物線上的點到焦點的距離,焦點弦長,拋物線上的點到準(zhǔn)線(或與準(zhǔn)線平行的直線)的距離時,常常考慮用拋物線的定義進(jìn)行問題的轉(zhuǎn)化.象本題弦的中點到準(zhǔn)線的距離首先等于兩點到準(zhǔn)線距離之和的一半,然后轉(zhuǎn)化為兩點到焦點的距離,從而與弦長之間可通過余弦定理建立關(guān)系.2、A【解析】
由圖根據(jù)三角函數(shù)圖像的對稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數(shù)的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.3、D【解析】
先求出球心到四個支點所在球的小圓的距離,再加上側(cè)面三角形的高,即可求解.【詳解】設(shè)四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質(zhì)可得,又由到底面的距離即為側(cè)面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【點睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及球的性質(zhì)的綜合應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與計算能力,屬于基礎(chǔ)題.4、A【解析】
設(shè),直線的方程為,聯(lián)立方程得到,,根據(jù)向量關(guān)系化簡到,得到離心率.【詳解】設(shè),直線的方程為.聯(lián)立整理得,則.因為,所以為線段的中點,所以,,整理得,故該雙曲線的離心率.故選:.【點睛】本題考查了雙曲線的離心率,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.5、D【解析】
先根據(jù)三視圖還原幾何體是一個四棱錐,根據(jù)三視圖的數(shù)據(jù),計算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運算求解的能力,屬于中檔題.6、D【解析】
利用向量模的運算列方程,結(jié)合向量數(shù)量積的運算,求得實數(shù)的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數(shù)量積的運算,屬于基礎(chǔ)題.7、C【解析】
首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.8、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).9、C【解析】
先畫出函數(shù)圖像和圓,可知,若設(shè),則,所以,而要求的最小值,只要取得最大值,若設(shè)圓的圓心為,則,所以只要取得最小值,若設(shè),則,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值即可.【詳解】記圓的圓心為,設(shè),則,設(shè),記,則,令,因為在上單調(diào)遞增,且,所以當(dāng)時,;當(dāng)時,,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當(dāng)時等號成立).故選:C【點睛】此題考查的是兩個向量的數(shù)量積的最小值,利用了導(dǎo)數(shù)求解,考查了轉(zhuǎn)化思想和運算能力,屬于難題.10、B【解析】
通過列舉法,列舉出同學(xué)的朝向,然后即可求出需要向后轉(zhuǎn)的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉(zhuǎn)”第2次“向后轉(zhuǎn)”第3次“向后轉(zhuǎn)”第4次“向后轉(zhuǎn)”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點睛】本題考查的是求最小推理次數(shù),一般這類題型構(gòu)造較為巧妙,可通過列舉的方法直觀感受,屬于基礎(chǔ)題.11、B【解析】
列出每一次循環(huán),直到計數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.12、B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結(jié)果.【詳解】由題可知:,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數(shù)的計算,當(dāng)集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由自變量所在定義域范圍,代入對應(yīng)解析式,再由對數(shù)加減法運算法則與對數(shù)恒等式關(guān)系分別求值再相加,即為答案.【詳解】因為函數(shù),則因為,則故故答案為:【點睛】本題考查分段函數(shù)求值,屬于簡單題.14、192【解析】
根據(jù)題意,分步進(jìn)行分析:①,在三對父子中任選1對,安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,由分步計數(shù)原理計算可得答案.【詳解】根據(jù)題意,分步進(jìn)行分析:①,在三對父子中任選1對,有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對父子是相鄰而坐的坐法種;故答案為:【點睛】本題考查排列、組合的應(yīng)用,涉及分步計數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.15、【解析】
先由題意得:,再利用向量數(shù)量積的幾何意義得,可得結(jié)果.【詳解】由知:,則在方向的投影為,由向量數(shù)量積的幾何意義得:,∴故答案為【點睛】本題考查了投影的應(yīng)用,考查了數(shù)量積的幾何意義及向量的模的運算,屬于基礎(chǔ)題.16、【解析】
根據(jù)已知條件計算出,結(jié)合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進(jìn)而可得出的取值范圍.【詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【點睛】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、;4;12.【解析】
由題意可知,,求導(dǎo)函數(shù),方程在區(qū)間上有實數(shù)解,求出實數(shù)的取值范圍;由,則,分步討論,并利用導(dǎo)函數(shù)在函數(shù)的單調(diào)性的研究,得出正實數(shù)的最大值;設(shè)直線與曲線的切點為,因為,所以切線斜率,切線方程為,設(shè)直線與曲線的切點為,因為,所以切線斜率,即切線方程為,整理得.所以,求得,設(shè),則,所以在上單調(diào)遞增,最后求出實數(shù)的值.【詳解】由題意可知,,則,即方程在區(qū)間上有實數(shù)解,解得;因為,則,①當(dāng),即時,恒成立,所以在上單調(diào)遞增,不符題意;②當(dāng)時,令,解得:,當(dāng)時,,單調(diào)遞增,所以不存在,使得在上的最大值為,不符題意;③當(dāng)時,,解得:,且當(dāng)時,,當(dāng)時,,所以在上單調(diào)遞減,在上單調(diào)遞增,若,則在上單調(diào)遞減,所以,若,則上單調(diào)遞減,在上單調(diào)遞增,由題意可知,,即,整理得,因為存在,符合上式,所以,解得,綜上,的最大值為4;設(shè)直線與曲線的切點為,因為,所以切線斜率,即切線方程整理得:由題意可知,,即,即,解得所以切線方程為,設(shè)直線與曲線的切點為,因為,所以切線斜率,即切線方程為,整理得.所以,消去,整理得,且因為,解得,設(shè),則,所以在上單調(diào)遞增,因為,所以,所以,即.【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的研究,導(dǎo)數(shù)的幾何意義,屬于難題.18、(1)見解析;(2)【解析】
(1)不等式等價于,設(shè),利用導(dǎo)數(shù)可證恒成立,從而原不等式成立.(2)由題設(shè)條件可得在上有兩個不同零點,且,利用導(dǎo)數(shù)討論的單調(diào)性后可得其最小值,結(jié)合前述的集合的包含關(guān)系可得的取值范圍.【詳解】(1)設(shè),則,當(dāng)時,由,所以在上是減函數(shù),所以,故.因為,所以,所以當(dāng)時,.(2)由(1)當(dāng)時,;任意,存在和使成立,所以在上有兩個不同零點,且,(1)當(dāng)時,在上為減函數(shù),不合題意;(2)當(dāng)時,,由題意知在上不單調(diào),所以,即,當(dāng)時,,時,,所以在上遞減,在上遞增,所以,解得,因為,所以成立,下面證明存在,使得,取,先證明,即證,令,則在時恒成立,所以成立,因為,所以時命題成立.因為,所以.故實數(shù)的最小值為.【點睛】本題考查導(dǎo)數(shù)在不等式恒成立、等式能成立中的應(yīng)用,前者注意將欲證不等式合理變形,轉(zhuǎn)化為容易證明的新不等式,后者需根據(jù)等式能成立的特點確定出函數(shù)應(yīng)該具有的性質(zhì),再利用導(dǎo)數(shù)研究該性質(zhì),本題屬于難題.19、(1),表示圓心為,半徑為的圓;(2)【解析】
(1)根據(jù)參數(shù)得到直角坐標(biāo)系方程,再轉(zhuǎn)化為極坐標(biāo)方程得到答案.(2)直線方程為,計算圓心到直線的距離加上半徑得到答案.【詳解】(1),即,化簡得到:.即,表示圓心為,半徑為的圓.(2),即,圓心到直線的距離為.故曲線上的點到直線的最大距離為.【點睛】本題考查了參數(shù)方程,極坐標(biāo)方程,直線和圓的距離的最值,意在考查學(xué)生的計算能力和應(yīng)用能力.20、(1)證明見解析;(2).【解析】
(1)用數(shù)學(xué)歸納法證明即可;(2)根據(jù)條件可得,然后將用,,表示出來,根據(jù)是一個整數(shù),可得結(jié)果.【詳解】解:(1)令,,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 獨資公司股權(quán)轉(zhuǎn)讓及權(quán)益讓渡協(xié)議
- 用吊車合同范本
- 房產(chǎn)出售中介代理協(xié)議2024
- 2024年度項目管控咨詢簡明協(xié)議
- 毛石出售合同范本
- 工程造價合同范本
- 材料合同范本
- 購買電機合同范本
- 范本:2024年節(jié)能照明設(shè)備銷售協(xié)議
- 2024智能監(jiān)控系統(tǒng)銷售協(xié)議條款
- 水壓試驗報告(帶曲線圖)
- 2023年CSCO尿路上皮癌診療指南
- 在高三學(xué)生月考總結(jié)表彰會上的講話
- 高價值醫(yī)療設(shè)備產(chǎn)品定價過程
- 保險行業(yè)創(chuàng)說會-課件
- 初中語文-江城子·密州出獵蘇軾教學(xué)設(shè)計學(xué)情分析教材分析課后反思
- 離線論文 關(guān)于科學(xué)思維方法在實際生活和工作中的應(yīng)用、意義
- 梅嶺三章導(dǎo)學(xué)案
- 六年級英語辨音復(fù)習(xí)題
- 船用柴油機課程
- YY/T 1621-2018醫(yī)用二氧化碳培養(yǎng)箱
評論
0/150
提交評論