版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)在[2,3]上單調(diào)遞減,則實數(shù)a的取值范圍是()A. B.C. D.2.已知函數(shù),則下列判斷正確的是A.函數(shù)是奇函數(shù),且在R上是增函數(shù)B.函數(shù)偶函數(shù),且在R上是增函數(shù)C.函數(shù)是奇函數(shù),且在R上是減函數(shù)D.函數(shù)是偶函數(shù),且在R上是減函數(shù)3.三個數(shù)大小的順序是A. B.C. D.4.已知,則函數(shù)與函數(shù)的圖象可能是()A. B.C. D.5.若關(guān)于的不等式的解集為,則函數(shù)在區(qū)間上的最小值為()A. B.C. D.6.在中,若,則的形狀為()A.等邊三角形 B.直角三角形C.鈍角三角形 D.不含角的等腰三角形7.設(shè)函數(shù),則的奇偶性A.與有關(guān),且與有關(guān) B.與有關(guān),但與無關(guān)C.與無關(guān),且與無關(guān) D.與無關(guān),但與有關(guān)8.的值是()A B.C. D.9.已知一個空間幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:),可得這個幾何體的體積(單位:cm3)是A.4 B.5C.6 D.710.已知為銳角,為鈍角,,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.直線與直線關(guān)于點對稱,則直線方程為______.12.已知集合,,則集合________.13.化簡:=____________14.如圖,已知△和△有一條邊在同一條直線上,,,,在邊上有個不同的點F,G,則的值為______15.已知角的終邊經(jīng)過點,則的值等于_____16.若,則的取值范圍為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)為R上的奇函數(shù),其中a為常數(shù),e是自然對數(shù)的底數(shù).(1)求函數(shù)的解析式;(2)求函數(shù)在上的最小值,并求取最小值時x的值.18.已知函數(shù),.(1)利用定義證明函數(shù)單調(diào)遞增;(2)求函數(shù)的最大值和最小值.19.已知集合.(1)當(dāng)時,求;(2)當(dāng)時,求實數(shù)的取值范圍.20.如圖5,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.(Ⅰ)證明:CD⊥平面PAE;(Ⅱ)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P-ABCD的體積.21.已知冪函數(shù),且在上為增函數(shù).(1)求函數(shù)的解析式;(2)若,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)復(fù)合函數(shù)的單調(diào)性法則“同增異減”求解即可.【詳解】由于函數(shù)在上單調(diào)遞減,在定義域內(nèi)是增函數(shù),所以根據(jù)復(fù)合函數(shù)的單調(diào)性法則“同增異減”得:在上單調(diào)遞減,且,所以且,解得:.故的取值范圍是故選:C.2、A【解析】求出的定義域,判斷的奇偶性和單調(diào)性,進而可得解.【詳解】的定義域為R,且;∴是奇函數(shù);又和都是R上的增函數(shù);是R上的增函數(shù)故選A【點睛】本題考查奇偶性的判斷,考查了指數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題3、B【解析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性知:,即;,即;,即;所以,故正確答案為選項B考點:指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性;間接比較法4、B【解析】條件化為,然后由的圖象確定范圍,再確定是否相符【詳解】,即.∵函數(shù)為指數(shù)函數(shù)且的定義域為,函數(shù)為對數(shù)函數(shù)且的定義域為,A中,沒有函數(shù)的定義域為,∴A錯誤;B中,由圖象知指數(shù)函數(shù)單調(diào)遞增,即,單調(diào)遞增,即,可能為1,∴B正確;C中,由圖象知指數(shù)函數(shù)單調(diào)遞減,即,單調(diào)遞增,即,不可能為1,∴C錯誤;D中,由圖象知指數(shù)函數(shù)單調(diào)遞增,即,單調(diào)遞減,即,不可能為1,∴D錯誤故選:B.【點睛】本題考查指數(shù)函數(shù)與對數(shù)函數(shù)的圖象與性質(zhì),確定這兩個的圖象與性質(zhì)是解題關(guān)鍵.5、A【解析】由題意可知,關(guān)于的二次方程的兩根分別為、,求出、的值,然后利用二次函數(shù)的基本性質(zhì)可求得在區(qū)間上的最小值.【詳解】由題意可知,關(guān)于的二次方程的兩根分別為、,則,解得,則,故當(dāng)時,函數(shù)取得最小值,即.故選:A.6、B【解析】利用三角形的內(nèi)角和,結(jié)合差角的余弦公式,和角的正弦公式,即可得出結(jié)論【詳解】解:由題意可得sin(A﹣B)=1+2cos(B+C)sin(A+C),∴sin(A﹣B)=1﹣2cosAsinB,∴sinAcosB﹣cosAsinB=1﹣2cosAsinB,∴sinAcosB+cosAsinB=1,∴sin(A+B)=1,∴A+B=90°,∴△ABC是直角三角形故選:B【點睛】本題考查差角的余弦公式,和角的正弦公式,考查學(xué)生的計算能力,屬于基礎(chǔ)題7、D【解析】因為當(dāng)時,函數(shù),為偶函數(shù);當(dāng)時,函數(shù),為奇函數(shù)所以的奇偶性與無關(guān),但與有關(guān).選D8、C【解析】由,應(yīng)用誘導(dǎo)公式求值即可.【詳解】.故選:C9、A【解析】如圖三視圖復(fù)原的幾何體是底面為直角梯形,是直角梯形,,一條側(cè)棱垂直直角梯形的直角頂點的四棱錐,即平面所以幾何體的體積為:故選A【點睛】本題考查幾何體的三視圖,幾何體的表面積的求法,準(zhǔn)確判斷幾何體的形狀是解題的關(guān)鍵10、C【解析】利用平方關(guān)系和兩角和的余弦展開式計算可得答案.【詳解】因為為銳角,為鈍角,,所以,,則.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意可知,直線應(yīng)與直線平行,可設(shè)直線方程為,由于兩條至直線關(guān)于點對稱,可通過計算點分別到兩條直線的距離,通過距離相等,即可求解出,完成方程的求解.【詳解】解:由題意可設(shè)直線的方程為,則,解得或舍去,故直線的方程為故答案為:.12、【解析】根據(jù)集合的交集運算,即可求出結(jié)果.【詳解】因為集合,,所以.故答案為:.13、【解析】利用三角函數(shù)的平方關(guān)系式,化簡求解即可【詳解】===又,所以,所以=,故填:【點睛】本題考查同角三角函數(shù)的基本關(guān)系式的應(yīng)用,三角函數(shù)的化簡求值,考查計算能力14、16【解析】由題意易知:△和△為全等的等腰直角三角形,斜邊長為,,故答案為16點睛:平面向量數(shù)量積類型及求法(1)求平面向量數(shù)量積有三種方法:一是夾角公式a·b=|a||b|cosθ;二是坐標(biāo)公式a·b=x1x2+y1y2;三是利用數(shù)量積的幾何意義.本題就是利用幾何意義處理的.(2)求較復(fù)雜的平面向量數(shù)量積的運算時,可先利用平面向量數(shù)量積的運算律或相關(guān)公式進行化簡.15、【解析】因為角的終邊經(jīng)過點,過點P到原點的距離為,所以,所以,故填.16、【解析】一元二次不等式,對任意的實數(shù)都成立,與x軸最多有一個交點;由對勾函數(shù)的單調(diào)性可以求出m的范圍.【詳解】由,得.由題意可得,,即.因為,所以,故.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)在上的最小值是-4,取最小值時x的值為.【解析】(1)根據(jù)函數(shù)為R上的奇函數(shù),由求解;(2)由(1)得到,令,轉(zhuǎn)化為二次函數(shù)求解.【小問1詳解】解:因為函數(shù)為R上的奇函數(shù),所以,解得,所以,經(jīng)檢驗滿足題意;【小問2詳解】由(1)知:,,另,因為t在上遞增,則,函數(shù)轉(zhuǎn)化為,當(dāng)時,取得最小值-4,此時,即,解得,則,所以在上的最小值是-4,取最小值時x的值為.18、(1)證明見詳解;(2)最大值;最小值.【解析】(1)任取、且,求,因式分解,然后判斷的符號,進而可得出函數(shù)的單調(diào)性;(2)利用(1)中的結(jié)論可求得函數(shù)的最大值和最小值.【詳解】(1)任取、且,因為,所以,,,,,,即,因此,函數(shù)在區(qū)間上為增函數(shù);(2)由(1)知,當(dāng)時,函數(shù)取得最小值;當(dāng)時,函數(shù)取得最大值.【點睛】關(guān)鍵點睛:求函數(shù)的最值利用函數(shù)的單調(diào)性是解決本題的關(guān)鍵.19、(1)(2)【解析】(1)先求解集合,再根據(jù)交集運算求解結(jié)果(2)討論當(dāng)時,,當(dāng)時,列出不等式組,能求出實數(shù)的取值范圍【小問1詳解】已知集合.當(dāng)時,,【小問2詳解】當(dāng)即時,,符合題意;當(dāng)時,要滿足條件,則有,解得,綜上所述,實數(shù)的取值范圍20、(1)證明略(2)【解析】(Ⅰ)要證平面,由已知平面,已經(jīng)有,因此在直角梯形中證明即可,通過計算得,而是中點,則有;(Ⅱ)PB與平面ABCD所成的角是,下面關(guān)鍵是作出PB與平面PAE所成的角,由(Ⅰ)作,分別與相交于,連接,則是PB與平面PAE所成的角,由這兩個角相等,可得,同樣在直角梯形中可計算出,也即四棱錐P-ABCD的高,體積可得.另外也可建立空間直角坐標(biāo)系,通過空間向量法求得結(jié)論,第(Ⅱ)小題中關(guān)鍵是求點的坐標(biāo),注意這里直線與平面所成的角相等轉(zhuǎn)化為直線與平面的法向量的夾角相等試題解析:解法1(Ⅰ如圖(1)),連接AC,由AB=4,,是的中點,所以所以而內(nèi)的兩條相交直線,所以CD⊥平面PAE(Ⅱ)過點B作由(Ⅰ)CD⊥平面PAE知,BG⊥平面PAE.于是為直線PB與平面PAE所成的角,且由知,為直線與平面所成的角由題意,知因為所以由所以四邊形是平行四邊形,故于是在中,所以于是又梯形的面積為所以四棱錐的體積為解法2:如圖(2),以A為坐標(biāo)原點,所在直線分別為建立空間直角坐標(biāo)系.設(shè)則相關(guān)的各點坐標(biāo)為:(Ⅰ)易知因為所以而是平面內(nèi)的兩條相交直線,所以(Ⅱ)由題設(shè)和(Ⅰ)知,分別是,的法向量,而PB與所成的角和PB與所成的角相等,所以由(Ⅰ)知,由故解得又梯形ABCD的面積為,所以四
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度電腦購置協(xié)議格式范本一
- 2024年企業(yè)用車租賃協(xié)議模板一
- 2024年商品供應(yīng)協(xié)議簡化版樣本一
- 2024年度展覽服務(wù)協(xié)議簡化版版
- 環(huán)??⒐を炇蘸贤0?/a>
- 2024年適用餐飲業(yè)廚師個人勞動協(xié)議文本一
- 采購合同工程合同模板
- 二手房交易中介服務(wù)協(xié)議范本版
- 達人探店合同模板
- 設(shè)備贈與合同模板
- MOOC 跨文化交際通識通論-揚州大學(xué) 中國大學(xué)慕課答案
- EDA實驗報告1組合邏輯電路的設(shè)計
- 有效初三英語課堂教學(xué)ppt課件
- 幸福在哪里作文800字高中范文
- 五人制足球比賽記錄表.doc
- 整式的乘法與因式分解所有知識點總結(jié)
- 《運動生理學(xué)》教案
- 陳春花管理學(xué)著作精華解讀之《管理的常識》
- 鉆孔灌注樁試樁施工方案
- 外貿(mào)銷售合同
- 混凝土地面施工方案
評論
0/150
提交評論