采礦學(xué)王莊煤礦論文設(shè)計(jì)_第1頁(yè)
采礦學(xué)王莊煤礦論文設(shè)計(jì)_第2頁(yè)
采礦學(xué)王莊煤礦論文設(shè)計(jì)_第3頁(yè)
采礦學(xué)王莊煤礦論文設(shè)計(jì)_第4頁(yè)
采礦學(xué)王莊煤礦論文設(shè)計(jì)_第5頁(yè)
已閱讀5頁(yè),還剩133頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

精品文檔歡迎下載目錄一般局部TOC\o"1-3"\h\u306091礦區(qū)概述及井田地質(zhì)特征 ②監(jiān)測(cè)數(shù)據(jù)可作為修改、完善錨桿支護(hù)初始設(shè)計(jì)數(shù)據(jù)的依據(jù)之一。頂板離層指示儀實(shí)際上是兩點(diǎn)巷道圍巖位移計(jì)。在頂板鉆孔中布置兩個(gè)測(cè)點(diǎn),一個(gè)在圍巖深部穩(wěn)定處,一個(gè)在錨桿端部圍巖中。離層值就是圍巖中兩測(cè)點(diǎn)之間以及錨桿端部圍巖與巷道頂板外表間的相對(duì)位移值,并可直觀(guān)顯示出相對(duì)位移值(離層量)的大小?!?〕位移量監(jiān)測(cè),利用多點(diǎn)位移計(jì)來(lái)完成巖層深部位移監(jiān)測(cè),多點(diǎn)位移計(jì)是監(jiān)測(cè)巷道在掘進(jìn)和受采動(dòng)影響的整個(gè)效勞期間深部圍巖變形隨時(shí)間變化情況的一種儀器。安設(shè)多點(diǎn)位移計(jì)的目的:了解巷道圍巖各局部不同深度的位移,巖層弱化和破壞的范圍〔離層情況、塑性區(qū)、破碎區(qū)的分布等〕;判斷錨桿與圍巖之間是否發(fā)生脫離,錨桿應(yīng)變是否超過(guò)極限應(yīng)變量;為修改錨桿支護(hù)設(shè)計(jì)提供依據(jù)。

4煤巷錨桿支護(hù)技術(shù)在王莊煤礦的應(yīng)用4.1王莊煤礦簡(jiǎn)介潞安集團(tuán)王莊煤礦設(shè)計(jì)生產(chǎn)能力為4.0Mt/a,立井單水平開(kāi)拓,準(zhǔn)備方式為帶區(qū),煤層開(kāi)采方法為大采上下位放頂煤工藝,主采煤層為3號(hào)煤層,其中運(yùn)輸大巷和輔助運(yùn)輸大巷布置與巖層中,回風(fēng)大巷布置于煤層中,分帶斜巷長(zhǎng)度到達(dá)了2700m,煤巷錨桿支護(hù)技術(shù)對(duì)于礦井巷道支護(hù)平安顯得尤為重要。4.2錨桿支護(hù)技術(shù)在王莊礦的應(yīng)用4.2.1大巷支護(hù)王莊煤礦膠帶運(yùn)輸大巷、輔助運(yùn)輸大巷及回風(fēng)大巷支護(hù)方式均采用錨噴支護(hù),即錨桿、噴射混凝土聯(lián)合支護(hù),其中膠帶運(yùn)輸大巷和輔助運(yùn)輸大巷為半圓拱形斷面,膠帶運(yùn)輸大巷布置于巖層,設(shè)計(jì)掘進(jìn)斷面積為19.8m2,混凝土噴射厚度100mm,樹(shù)脂錨固劑加固,錨桿排列方式為三花式,錨桿間距800mm,示意見(jiàn)圖4-1;圖4-1膠帶運(yùn)輸大巷斷面示意圖回風(fēng)大巷沿煤層頂板掘進(jìn),為矩形斷面,凈斷面18.3m2,混凝土噴射厚度100mm,樹(shù)脂錨固劑加固,錨桿長(zhǎng)度2200mm,外露端100mm,錨桿排列方式為三花式,錨桿間距800mm,示意圖見(jiàn)圖4-2。圖4-2回風(fēng)大巷斷面示意圖4.2.2回采巷道支護(hù)王莊煤礦東一帶區(qū),各分帶斜巷斷面形狀及支護(hù)特征均相同:為錨網(wǎng)索組合鋼帶支護(hù),矩形斷面。斜巷均寬4.8m,高為3.5m,掘進(jìn)斷面15.75m2?!?〕頂板支護(hù)W鋼帶組合錨桿支護(hù),并進(jìn)行錨索補(bǔ)強(qiáng)。錨桿直徑Φ20mm,長(zhǎng)度2.2m,左旋無(wú)縱筋螺紋鋼錨桿〔高強(qiáng)度〕,樹(shù)脂加長(zhǎng)錨固,破斷力230kN,錨桿間排距800mm;WX220/3.0型鋼帶寬為220mm,長(zhǎng)4250mm,厚3mm;采用菱形金屬網(wǎng)護(hù)頂;單根鋼絞線(xiàn)錨索,長(zhǎng)6.3m,首采面安設(shè)在巷道頂脊線(xiàn)處,間距1.6m。托盤(pán):采用拱形高強(qiáng)度托盤(pán),規(guī)格為150×150×8mm。錨桿角度:靠近巷幫的頂板錨桿安設(shè)角度與頂板垂線(xiàn)成30度角,其余與頂板垂直。網(wǎng)片規(guī)格:采用鐵絲編織的菱形金屬網(wǎng)護(hù)頂,規(guī)格型號(hào)50×50mm、5.5×1.1m。〔2〕巷幫支護(hù)錨桿直徑Φ20mm,長(zhǎng)度2.2m,左旋無(wú)縱筋螺紋鋼錨桿〔高強(qiáng)度〕,樹(shù)脂加長(zhǎng)錨固,破斷力230kN,錨桿間排距800mm;錨桿角度:靠近頂板的巷幫錨桿安設(shè)角度與水平線(xiàn)成15°。幫支護(hù)最大滯后頂支護(hù)為3m,嚴(yán)禁空班支護(hù)。如出現(xiàn)幫破碎,幫錨桿必須跟頂支護(hù)。如圖4-3所示。圖4-3回采巷道斷面支護(hù)示意圖4.2.3礦區(qū)錨桿支護(hù)平安保障體系制度保障,依據(jù)?煤巷錨桿支護(hù)技術(shù)標(biāo)準(zhǔn)?,并結(jié)合王莊礦具體生產(chǎn)、地質(zhì)條件,聽(tīng)取各方技術(shù)人員的意見(jiàn)制定?王莊煤礦錨桿支護(hù)技術(shù)標(biāo)準(zhǔn)?,在地質(zhì)評(píng)估、支護(hù)設(shè)計(jì)、支護(hù)材料的選用、施工行為標(biāo)準(zhǔn)、施工質(zhì)量驗(yàn)收標(biāo)準(zhǔn)、數(shù)據(jù)監(jiān)測(cè)監(jiān)控以及錨桿支護(hù)人員技術(shù)培訓(xùn)等方面都制定了嚴(yán)格的規(guī)定,用以標(biāo)準(zhǔn)錨桿支護(hù)施工措施?!?〕管理保障,加強(qiáng)施工作業(yè)機(jī)械工具及材料的管理,組成檢查小組,定期對(duì)井下采掘巷道進(jìn)行支護(hù)質(zhì)量檢查,依據(jù)支護(hù)標(biāo)準(zhǔn),如假設(shè)發(fā)現(xiàn)問(wèn)題或危險(xiǎn)征兆,及時(shí)反響至王莊礦平安部,采取相應(yīng)措施,并提出相關(guān)處理整改建議?!?〕技術(shù)保障,定期組織錨桿支護(hù)相關(guān)人員〔操作工、安監(jiān)員〕進(jìn)行培訓(xùn),使得管理人員、施工人員具備可靠的錨網(wǎng)支護(hù)專(zhuān)業(yè)知識(shí),提高技術(shù)水平?!?〕礦壓監(jiān)測(cè)預(yù)警機(jī)制,建立可靠完善的礦壓監(jiān)測(cè)監(jiān)控系統(tǒng),吸收技術(shù)人員、管理人員,在回采、掘進(jìn)巷道內(nèi)礦壓顯現(xiàn)處安設(shè)礦壓監(jiān)測(cè)站,實(shí)時(shí)監(jiān)測(cè),及時(shí)反響監(jiān)測(cè)結(jié)果,并對(duì)檢測(cè)結(jié)果進(jìn)行分析、處理,與對(duì)巷道平安提供監(jiān)測(cè)預(yù)防作用。

5煤巷錨桿支護(hù)技術(shù)的改良途徑5.1開(kāi)展現(xiàn)狀伴隨著技術(shù)開(kāi)展,需求增加,開(kāi)采深度也不斷增加,巷道埋深也隨之增加,地應(yīng)力也相應(yīng)加大,礦壓顯現(xiàn)明顯增加,伴之而來(lái)的是地質(zhì)條件的復(fù)雜和進(jìn)一步的惡化,這就對(duì)巷道支護(hù)技術(shù)提出了更高的要求。同時(shí),采煤機(jī)械的自動(dòng)化與采煤方法的高效化開(kāi)展,綜采放頂煤、厚煤層一次采全高開(kāi)采技術(shù)的快速開(kāi)展和大面積應(yīng)用,對(duì)煤巷錨桿支護(hù)技術(shù)提出更高要求。全煤巷道和半煤巖巷、大斷面巷道、沿空掘巷及破碎圍巖巷道所占的比重越來(lái)越大,支護(hù)難度顯著加大,這無(wú)疑需要巷道支護(hù)技術(shù)作出更好更強(qiáng)的改變。5.2煤巷錨桿支護(hù)技術(shù)改良途徑〔1〕增強(qiáng)錨桿的初錨力,跟據(jù)相關(guān)資料說(shuō)明,國(guó)外煤巷錨桿初錨力在100kN以上,占錨桿極限載荷的一半以上,而我國(guó)煤巷錨桿的螺母安裝多為人為操作,一般初錨力為30kN以下,占錨桿極限載荷的五分之一。初錨力相對(duì)過(guò)小,降低了對(duì)圍巖的支護(hù)效果,不利于維持巷道圍巖的長(zhǎng)期穩(wěn)定。〔2〕加強(qiáng)煤層巷道巷幫支護(hù)是維持巷道圍巖穩(wěn)定的重要步驟。煤巷兩幫煤體一般較松散破碎,如果兩幫支護(hù)效果一般,常引起兩幫煤體發(fā)生松動(dòng)掉落,加大懸頂面積,易導(dǎo)致頂板破損,甚至冒落。因此,加強(qiáng)對(duì)巷道煤幫的支護(hù)顯得尤為重要,通??梢圆扇〉募夹g(shù)措施有:采用強(qiáng)力錨桿,錨噴支護(hù),配合網(wǎng)、梁形成聯(lián)合支護(hù)等?!?〕研發(fā)新型高強(qiáng)度錨桿也是增強(qiáng)煤巷錨桿支護(hù)效果的有效途徑?!?〕采用小孔徑錨索,提高錨固效果。當(dāng)頂板巖層比擬破碎的情況下,采用小孔徑錨索對(duì)其進(jìn)行支護(hù),可有效的對(duì)頂板進(jìn)行加固支護(hù),保持頂板巖層的長(zhǎng)期穩(wěn)定?!?〕推廣以錨桿支護(hù)為主的聯(lián)合支護(hù)形式,隨著開(kāi)采深度的加深,動(dòng)壓影響對(duì)處于軟巖層的圍巖影響較大,易發(fā)生變形,單一的錨桿支護(hù)已無(wú)法完全滿(mǎn)足巷道支護(hù)要求,所以對(duì)于地壓大的不穩(wěn)定的圍巖,聯(lián)合支護(hù)必不可少?!?〕加強(qiáng)頂板動(dòng)態(tài)檢測(cè)監(jiān)控,確保煤巷錨桿支護(hù)平安。根據(jù)國(guó)外經(jīng)驗(yàn)要制定相應(yīng)的檢測(cè)監(jiān)控標(biāo)準(zhǔn),對(duì)錨桿支護(hù)狀態(tài)下的巷道頂板進(jìn)行準(zhǔn)確的實(shí)時(shí)監(jiān)控,及時(shí)掌握巷道圍巖的變形數(shù)據(jù),一方面可以分析判斷圍巖動(dòng)態(tài),發(fā)現(xiàn)異常及時(shí)采取加強(qiáng)支護(hù)措施,防止危險(xiǎn)發(fā)生;另一方面統(tǒng)計(jì)反響信息,依據(jù)數(shù)據(jù)修改設(shè)計(jì)參數(shù),使巷道錨桿支護(hù)參數(shù)選擇更加科學(xué)合理。

6結(jié)論錨桿支護(hù)技術(shù)是煤炭開(kāi)采過(guò)程中的一項(xiàng)重要技術(shù),具備大量的理論依據(jù)和實(shí)踐經(jīng)驗(yàn),經(jīng)過(guò)50多年的開(kāi)展逐步成熟。錨桿支護(hù)技術(shù)為一種主動(dòng)支護(hù)形式,具有支護(hù)速度快、支護(hù)效果好、材料本錢(qián)低、工作人員勞強(qiáng)度小等優(yōu)點(diǎn),并且可以與混凝土噴射、鋼帶〔W型、M型〕、金屬網(wǎng)、工字鋼梁、錨索等聯(lián)合使用,它的廣泛使用可以給煤礦企業(yè)帶來(lái)有效的平安支護(hù)保障和顯著的經(jīng)濟(jì)效益。平安有效的巷道支護(hù)是礦井平安生產(chǎn)、高產(chǎn)高效的重要保證,經(jīng)過(guò)多年開(kāi)展實(shí)踐證明,煤巷錨桿支護(hù)技術(shù)是煤礦平安高效生產(chǎn)不可或缺的,普遍應(yīng)用于國(guó)內(nèi)外礦井支護(hù)行業(yè),是煤礦巷道的主要支護(hù)形式,代表了煤礦巷道支護(hù)技術(shù)的開(kāi)展方向。目前,隨著礦井開(kāi)采深度增加,圍巖條件變得愈發(fā)復(fù)雜,支護(hù)也相對(duì)困難,這需要在熟練應(yīng)用傳統(tǒng)錨桿支護(hù)工藝的根底之上,不斷開(kāi)發(fā)推廣新技術(shù)、新設(shè)備,才能保障礦井生存和平安生產(chǎn)。

參考文獻(xiàn)[1]侯朝炯,郭勵(lì)生,勾攀峰.煤巷錨桿支護(hù)[M].徐州:中國(guó)礦業(yè)大學(xué)出版社,1999.[2]康紅普,王金華.煤巷錨桿支護(hù)理論與成套技術(shù)[M].北京:煤炭工業(yè)出版社.2021.[3]馬念杰,侯朝炯.采準(zhǔn)巷道礦壓理論及應(yīng)用[M].北京:煤炭工業(yè)出版社,1995.[4]陸士良,湯雷,楊新安.錨桿錨固力與錨固技術(shù)[M].北京:煤炭工業(yè)出版社,1998.[5]程良奎,范景倫,韓軍等.巖土錨固[M].北京:中國(guó)建筑工業(yè)出版社,2003.[6]何滿(mǎn)朝,袁和生,靖洪文.中國(guó)煤炭錨桿支護(hù)理論與實(shí)踐[M].北京:科學(xué)出版社,2004.[7]范明建.錨桿預(yù)應(yīng)力與巷道支護(hù)效果的關(guān)系研究[D].北京:煤炭科學(xué)研究總院,2007.[8]陳東印.地下工程預(yù)應(yīng)力錨桿支護(hù)數(shù)值模擬分析[D].山東青島:山東科技大學(xué),2005.[9]康紅普,姜鐵明,高富強(qiáng).預(yù)應(yīng)力在錨桿支護(hù)中的作用[J].煤炭學(xué)報(bào),2007,32(7):673-678.[10]康紅普.軟巖回采巷道錨桿支護(hù)技術(shù)的開(kāi)展[A].軟巖工程專(zhuān)業(yè)委員會(huì)第二屆學(xué)術(shù)會(huì)議論文集[C].北京:1999.[11]康紅普.高強(qiáng)度錨桿支護(hù)技術(shù)的開(kāi)展與應(yīng)用[J].北京:煤炭科學(xué)技術(shù),2000,28(2):1-4.[12]侯朝炯.煤巷錨桿支護(hù)[M].徐州:中國(guó)礦業(yè)大學(xué)出版社,1999.[13]鞠文君,王澤進(jìn).測(cè)力錨桿研制與應(yīng)用技術(shù)[J].煤礦開(kāi)采,1997,增刊:54-57.[14]鞠文君.全長(zhǎng)錨固錨桿工況監(jiān)測(cè)方法[J].煤炭科學(xué)技術(shù),1998,(6):15-18.[15]孔恒,馬念杰.錨固技術(shù)及其理論研究現(xiàn)狀和方向[J].中國(guó)煤炭,2000,(4).精品文檔歡迎下載英文原文InvestigationintothedeformationofalargespanroadwayinsoftseamsanditssupporttechnologyFuJianqiua,b,FengChaoc,ShiJianjuna,*aSchoolofCivilandEnvironmentalEngineering,UniversityofScienceandTechnology,Beijing100083,ChinabGuangdongHongdaBlastingEngineeringCo.,Ltd.,Guangzhou510623,ChinacCrecElectrificationBureauXi’anRailwayEngineeringCo.,Ltd.,Xi’an710032,ChinaAbstract:Weinvestigatedthedeformationfailuremechanismofsurroundingrockfromtheaspectofengineeringsupportforaroadwayinseamswithsoftroofsandsoftfloorsandobservedthelargedisplacementoftheroadwayinthesesoftseams.Theresultshowsthatthedeformationareaisquitelarge,andsettlementoftheroofisevidentanddisplacementofthesidewallsisalsoobvious.Weconsideredrockbolt-cablecouplingforroadwaysupportinseamswithsoftroofsandfloors,inwhichthecableshouldbefixedatkeypositions.Aswell,wedesignedanoptimalschemetosupportaroadwayinsoftseamsoftheShizuishanSecondMineinNingxia,China.Fieldmonitoringresultsshowthatbolt-cablecouplingsupporthasachievedtheaimsofroadwaystabilitycontrolandminimizesdeformation.Keywords:Seamswithsoftroofsandfloors,Roadwaydeformation,Bolt-cablecouplingsupport,Fieldmonitoring1.IntroductionCoalprovidesmostoftheenergyforChina’seconomicgrowth.Buttheincreasingdemandforcoalaroundtheworldleadstoacontinuousdecreaseofthisresourcenearoronthesurfaceoftheearthwhichcanbeextractedeconomically.Hence,thetrendindevelopingminingtechnologyshouldbefocusedondeepmining,whichhasalreadybeenanimportantresearchfieldfortheinternationalminingindustry[1,2].Especially,softroadways,encounteredindeepminingtechnology,arebecomingoneofthemainchallengesrestrictingseriouscoalexploitation[3-7].Problemscausedbyroadwaysinseamswithsoftroofsandfloorshavebecomeprominentwithinsoftrockissues.Onceexcavated,thestabilityofroadwaysinsoftrockishardtomaintainduetoconstantdeformation,wheresecondarydeformationmayoccureventhoughtheroadwayitselfisstable[8].Forexample,intheXieyiMineadisplacementof800mmoccurredintherockofthemainroadway.Withhighinsitustress,themaximumdeformationofanundergroundpower-houseoftheErtanhydraulicpowerstationreached180mm.TheroadwayinamineoftheChenghecompanyisofatypicalsoft-rockroadwaywhereadeformationof300mmwasobserved.Inthesecases,hugerepairsandmaintenanceofroadwayswererequiredtosustainproduction.InordertocontrolroadwaydeformationintheChengheMine,aspecialsupportwasdesignedforalarge-spanroadwayinseamswithsoftroofsandfloors.Weinvestigatedtheapplicationofthisdesignandtheeffectofthissupportandtrustthatwehaveprovidedacontributiontocoalminesafety.2.Roadwaydeformationinsoftseamswithsoftroofsandfloors2.1.SoftseamswithsoftroofsandfloorsNormally,a“three-softroadway〞r(shí)eferstoroadwaysinmineswithsoftroofs,softcoalandsoftfloors[4].AsoftroofisclassifiedasaI-typeunstableroof.Therockoftheimmediateroofshowsfeaturessuchasconsiderablefracturedevelopment,brokenrockmassandlowcompressionstrength.Thisleadstothecollapseofroofsshortlyafterexcavation.Thecompressionstrengthofasoftfloorisverylow(lessthan4MPa),expandsandsoftenswhenitencounterswaterandheavesfrequently.SoftcoalreferstotheProtodyakonovscaleofhardness,rangingonlyfrom0.3to1.0,showingcharacteristicsofmanyjoints,instabilityandfragility.2.2.TheoryofsurroundingrockdeformationAstableandsaferoadwayisexcavatedinsoftseamsineitherofthefollowingtwoconditions:(1)nodeformationoccursinthesurroundingrock,or(2)smalldeformationoccursbutshowslittledamageinitsapplicationandtheprojectissafe.Hence,thestabilityofundergroundroadwaysinsoftseamsisdeterminedbytheinteractionoftwofactors:rockmassstrengthanditsdeformationcharacteristicsandthestressredistributioninthesurroundingrockafterexcavation.Thus,theprojectremainsstablewhenthefirstfactorprevailsoverthesecond.Changesinthestateofstressofprimaryrockafterexcavationcanbedescribedby:〔1〕whereσristheradialstressoftheroadwayafterexcavation;γtheunitweightofthesurroundingrock;Hthedepthoftheroadway;randr1arethelanewayradiusandinfluencedistancerespectively(theequivalentradiuscanbeusedastheinfluencedistance).AsshowninEq.(1),theradialstressnearthesidewallsisclosetozeroafterexcavation,whichresultsinvariationoftheelasticvolumetricstrainandrockcreepage.Withlowconfiningpressure,thestructuralplaneinthesoftrockexpands,whichchangesthehydro-geologicalconditionsofthesurroundingrock.Meanwhile,seepagewithinthefractureweakenstheintensityoftherockandacceleratesdilatationandsofteningoftherock.Asaresult,largeconvergencedisplacementappearsinthesurroundingrock.Roadwaysthereforeshowavarietyofdisplacements,e.g.roofsettlement,floorheave,vaultdisplacementandsidewallheaves.Furtherdeformationcanleadtoinstabilityoftheroadway,suchastensilefailureofroofsandsidewalls,shearcracksinroofs,floorheaveandrooffalls.Itshouldbeemphasizedthatseriousdeformationusuallyoccursattheintersectionofroofandsideswalls,whereroadwayfailureismostlikelywithouttimelysupport.2.3.DeformationofsurroundingrockinseamswithsoftroofsandfloorsFrominvestigatingextensiveprojects,theconclusionisreachedthatsurroundingrockdeformationinseamswithsoftroofsandfloorsshowsthefollowingfeatures:(1)largedisplacementsofrock,rapiddeformation,largeareaswithdeformationand(2)continuousdeformation.Rockrheologybecomesthedominantfeatureofroadwaydeformationwiththefollowingcharacteristicsinthesurroundingrock.(1)Temporarynaturalstabilizationandfastcompression;(2)Large,fastandcontinuousdeformation;(3)Hoopandasymmetricalcompressionandviolentfloorheave;(4)Normalrigidsupportbecomessusceptible.3.SupportofroadwayinsoftseamsPlasticdeformationusuallyresultsincertaindiscordantareaswithinthesurroundingrock.However,couplingsupportcaneffectivelyreinforcesupportforanchormeshappliedtothesurroundingrockandforrockboltsatkeypositions.Thus,deformationcanbereducedconsiderablywherethesupportisloadeduniformly.Forourstudy,wedesignedareinforcedsupportschemewithacombinationofrockbolts,rebarnet,shotcrete,rebarjoistsandanchorcables.3.1.SupportmechanismThesupportmeasureshadthefollowingresults.(1)Couplingsupportbyrockboltsandcablespro-activelyprovidedconsiderablepreloadaswellasaxialandlateralresistancetothesurroundingrock.Thesupportingresistanceincreasedquicklyasthedeformationinthesurroundingrockdeveloped.(2)Reinforcementwassuppliedwhentheintensityofthesurroundingrockslightlydecreased.Therefore,thecompressionstrengthofthesurroundingrockwasmaximized.Asaresult,theconversionoftheloadingbodytothesupportbodyeffectivelycontrolledthedeformation.(3)Theanchorcablesprovideddeepsupport.Theroofreinforcementintrudedorextrudedtheserocksandthenformedacombinedbeam.Simultaneously,thearchspringofthereinforcementexpandedintothedeepercoalrip,whichloweredistheshallowfloorstress,reducedtheplasticdepthoftheripandintheendlimitedtheripdisplacementandfloorheave.3.2.SupportprinciplesCompressionminimizationrequirestherelaxationofhugeaccumulatedplasticenergywithinthesurroundingrock.Lithologytheoryandengineeringpracticesuggeststhatsurroundingrockdeformationwouldgraduallyincreaseafterexcavation.Giventhespeedofdeformation,deformationisgenerallydividedintoadeceleratingphase,anapproximatelylinearconstantphaseandanacceleratingphase.Whentherockfallsduringtheacceleratingphase,itsstructureisrebuilt,developsfissuresandlowersitsintensity.Inthiscase,theresistancecanbemaximizedduetodeformationconversion,whileitsabilitytosupplysupportdecreasessharply.Thus,itiscriticaltoselecttheoptimalreinforcementareasandtimberingtime.Duringcouplingsupport,advancedpracticesofanchorcablesalwaysleadstosnappingofsteelstrandsduetothelargedeformation;however,itshystereticsupportresultsintheseparationoflayersbetweendifferentsectionsofrockbolts.Therefore,anoptimalsecondarycouplingsupportisconsideredfollowingtheselistedprinciples.Inthecaseofprimaryrockboltsupportforlooseandbrokensurroundingrock,stressconcentrationzonescanbefixedbynumericalsimulationandreinforcedsupportofanchorcablescanbetimelyconstructed.3.3.NumericalsimulationofcouplingsupportAccordingtothecouplingsupportprinciplesofsoftrock,anchorcablesaremosteffectivewhentheyarefixedatkeypositionsinroofs.Inourstudy,weoptedfortheFLAC3Dsoftwarepackagetosimulatethedynamicstateofthefirstcouplingsupport(Fig.1,referstoacombinationofanchorgroutingandagroutinglayer),inordertofixtheoptimumpositionforthesecondarycouplingsupport.Fig.1.GeneralsituationofnumericalsimulationwithsoftwareFLAC3DThefinite-differencenumericalFLAC3Dpackageisdeemedtobesuitableforgeotechnicalengineering[10].UsingaLagrangianmethod,itisespeciallyusefulinsimulatingmaterialdeformationandtwists.Aswell,thissoftwareusesanexplicitalgorithmtoobtainatimestepsolutionofthekineticequationsofmodelsandthentrackstheirgradualfailuresandcollapse.TheMole-Coulombintensitylawwasselectedforthissimulation.Fig.2.PartiallyenlargedfigureofshearstressstateintheroofoftheroadwayFig.2presentsapartiallyenlargedfigureofournumericalsimulation.Itshowsthatstressconcentrationoccurredattheshouldersoftheroofoftheroadway,wherethemosturgentanchorcablesupportisneeded.Thesimulationalsoshoweditwascriticaltodesignasecondarycouplingsupport.Fig.3ashowsthatafterthefirstcouplingsupport,theplasticzonehasbecomecomparativelyenlargedintheroof,whereastheplasticzone,especiallyontheroofshoulders,hadsharplydecreasedafterthesecondarycoupling(Fig.3b).Theresultssuggestacorrectreinforcementofthesecondarycouplingwithanchorcables.Fig.3.Plasticzoneofsurroundingrockwithdifferentsupport4.AtypicalroadwaysupportinsoftseamsGiventheprinciplesenunciatedearlier,itisimportanttouseseveralkindsofsupportingschemesfortheroadwaysinseamswithsoftroofsandfloors.Torealizethis,wedesignedatargetedsupportforthe#2336transportationroadwayinthesecondShizuishancollieryinNingxia,China.Thetransportationlanewaywaslocatedthroughoutthelengthoftheseam,4.5mwideand3.0mhigh.Alongtheentirelanewaythecoalandroofaresoft,henceitwasdifficulttosupportalargespanlanewayinthistypeofseam.Onaveragetheseamwas7.79mthick,withamaximumof9.69mandaminimumof6.31m.Theupperpartoftheseamisbrightcoal(f=1.2),thelowerpartisdullcoal(f=0.8)andinbetweenarethreelayersofdirt0.12-0.70mthick.Theroofconsistsofsequentialkaolin(onaverage0.62mthick),carbonaceousshale(onaverage0.25mthick)andarenaceousshale(onaverage0.18mthick)fromthebottomup.Thefloorconsistsofsequentialclay(onaverage0.18mthick)andarenaceousshale(onaverage1.5mthick).4.1.FirstcouplingsupportofrockboltsThelengthofeachrockboltwasclosetotheloosecircleofitssurroundingrock.Accordingtoelastic–plastictheoryweestimatedthemostfrequentlyoccurringrangeofloosecircles.Thetransportationlanewaywasdesignedinarectangularfashionasrequiredanditsequivalentradiuswascalculatedtobe2.7musingEq.(2).〔2〕WhereBisthewidthofthelaneway;htheheightandr0theequivalentradius.Sincethelanewaywastemporaryunsupportedafterexcavation,itssupportcapacitywasnil.Thus,theradiusofthemaximumplasticcirclewithinthelanewaywas3.88m(60%ofthetrialdata),calculatedwithEq.(3).〔3〕WhereR0istheradiusofthemaximumplasticcircle;r0theradiusofthecavern;σ0=10.58MPaistheprimarygroundpressureanddependsontheweightstressoftheupperrock,C=2.0MPaisthelithologicalcohesionwithintheplasticcircleandu=35.0°istheinternalfrictionangleoftheplasticcircle.Thus,theloosecircleoftheroofandthesidewallswere1.98and2.13masdescribedbyEqs.(4)and(5),respectively.〔4〕〔5〕Thetheoreticaldataobtainedwasestimatedbasedontheassumptionthatthestressoftheprimaryrockwasunderhydrostaticpressure.Similarly,theloosecirclerangedfrom200to300cmandthereforethesurroundingrockwasclassifiedasaI-type.Length(L),interval(M)anddiameter(d)oftherockboltscanbedeterminedbyEqs.(6)-(8)[9].〔6〕〔7〕〔8〕WhereListhelengthoftherockbolt;Mtheintervalbetweentherockbolts;dthediameteroftherockbolt,N=1.2,i.e.thecoefficientofrockclassificationandWthespanofthelaneway,4.5m.Basedontheroadwayprojectinthemine,thelengthoftherockboltsintheroofwasdesignedtobe2.4mlong.Theboltsinthesidewallswereas2.0mlong,withboltspacingof800mmandarraypitch800mm.4.2.SecondarycouplingsupportofanchorcablesAccidentshappenwhenrockboltsandanchorcablesarenotsuccessfullycoupled.Inordertoachieveabettercouplingsupport,therockbolts,ontheonehand,shouldbeexactlyembeddedatthelanewayshoulderswherestressconcentrationoccurs;ontheotherhand,anchorcablesshouldbedesignedaccordingtothecouplingeffectofthetwosupportmethods.SimulationwascarriedoutwithparametersofanchorcablesassuggestedbyEqs.(9)and(10).〔9〕〔10〕WhereLa,la1andla3areoveralllength,exposurelengthandanchorlengthoftheanchorcablesrespectively,m;la2istheeffectivelengthoftheanchorcables,m;andatheequivalentwidthofthelaneway,m.Intheend,wedesignedthefinalsupportschemeemphasizingthecouplingeffectofrockboltsandanchorcables(Fig.4).ThecorrespondingsupportparametersareshowninTable1.Table1ParametersofacouplingsupportdesignforlanewayinatypicalsoftseamComponentComponenttypesLength(m)Interval(m)Arraypitch(m)RockboltsintheroofTwistedsteelΦRockboltsinthesidewallsTwistedsteelΦ1620.80.7AnchorcablesSteelstrainΦ2.4RebarjoistsRebarΦ14Length×width=2600mm×50mmFig.4.Couplingsupportdesignforlanewayinatypicalsoftseam5.FieldmonitoringofcouplingsupportThemainobjectofinsitumonitoringistorevealtheevolvementofthesurroundingrock,aswellasthestabilityandthereliabilityofthesupportsystem[11-15].Hence,theresultsofmonitoringprovidereferencesforlaterdesignsandconstruction.Asuitableschemewasthereforeimportantforinsitumonitoringandactedasavaliditycheckofthesupportscheme.5.1.MonitoringschemeSincethesurroundingrockinthiscollieryexertslowstrengthandissensitivetoexcavation,itisadifficultenvironmentfortheoperationofrockbolts.Themonitoringschememusttobeconstructedstrictlyaccordingitsdesigninordertoguaranteetheefficacyoftheconstructionandfieldmonitoring.Fig.5showsthefieldmonitoringsectionarrangementintermsofthecurrentsituationinthemine.Onsitemonitoringmainlyinvolvedthefollowingobjects:(1)Surfacedisplacementofthesurroundingrock(relativedisplacementofroofandfloor,relativedisplacementofsidewallsandroofsettlement);(2)Separationlayeroftheroof;(3)Stateofstressoftherockbolts.Inourstudy,wemonitoredsurfacedisplacementofthesurroundingrockwithaJSS30Aconvergencemeter,theseparationlayerdeepinthesurroundingrockwithaDDW-4multi-pointextensometerandthestateofstressoftherockboltswithaYJK4500Bdigitalstaticresistancestrainmeter.Monitoringdevelopedaccordingtothevariationintheseparameters.Monitoringfrequenciesofcircleconvergencedisplacementandroofsettlementweredeterminedbydisplacementvelocityanddistancefromtheexcavationface.Ingeneral,thisrequiredintensivemonitoring,especiallyatthebeginningoftheexcavationuntilthesurroundingrockstabilized.Monitoringwasconductedonceadaywhentheexcavationlengthwaslessthan50mandeverytwodayswhenexcavationextendedfurtherthan50m.Fig.5.FieldmonitoringsectionarrangementoflanewayinatypicalsoftseamInthemonitoringtimeframe,roofsettlementofthetransportationroadwayandtherelativeconvergenceofthesidewallswerecontrolledwithinlessthan120and110mm,respectively.5.2.ResultsoffieldmonitoringThemonitoringresultoftheobviousdeformationinthe#1roadwaysectionisshowninFig.6.Fig.6.Fieldmonitoringofacouplingsupportinatypical3SseamThemaximumsettlementoftheroofinthe#1sectionwas98mmanditsmaximumspeedis28mm/d(Fig.6a).Withinthemonitoringperiod,theminimumsettlementspeedoftheroofwasnomorethan0.1mm/dandaveraging1.02mm/d.Wefoundthatthemaximumrelativeconvergenceofthesidewallswas72mmandculminatedatlessthan0.08mm/d.Boththesettlementandconvergencestabilizedafter2months.Themaximumseparationoftherooflayerwas65mm,whichoccurredapproximatelyonday15anddecreasedgraduallyfromdeepsectionstoshallowones(Fig.6b).Theseparationlayerthereaftersettledataplateaudespitedifferentdepths.Everyanchorrodsharedacompressionofabout34kNafterday15(Fig.6c).Variationinloadingvelocityoftheanchorrodwasnomorethan0.4kN/d.Intheend,thedesignedcouplingsupporthadefficientlycontrolledthedeformationofthesurroundingrockinthissoftseam.6.ConclusionsOnthebasisofthedeformationofthesurroundingrockandlaneway,thetheoryofsupportinseamswithsoftroofsandfloorsandoursimulationandfieldmonitoringofanoptimalcouplingsupport,wedrawthefollowingconclusions.(1)Forroadwaysinseamswithsoftroofs,coalandfloors,deformationanditsrangeinthesurroundingrockislarge,roofsettlementisdistinctanddisplacementofthesidewallssevere.(2)Theproposedoptimumsupportisimportantforlanewaysupportinsoftseams.Itconsistsofafirstcouplingsupportwithrockboltsandsecondaryreinforcementwithanchorcables,whichweintroducedtimelyatkeypositions.Numericalsimulationimpliedthatstresswasconcentratedatroofshouldersoftheroadway,whichwereinthegreatestneedforurgentsupportofanchorcables.Theplasticzonedecreasedafterthesecondcouplingsupportwasinstalled,comparedtothesituationwithonlythefirstsupport.(3)Awellcoupledsupportofrockboltsandcablesisimportantforlanewaysupport,especiallyforlargespanroadwaysinsoftstrata.Theefficacyofanchorcablescanbemaximizedonlyiftheyarefixedatkeypositionsinroofsandfloorsandthereforecontrolthedeformationinordernottoendangerroadways.(4)Thefieldmonitoringshowsthattheoptimalcouplingsupportschemecanreducethedeformationofthesurroundingrockconsiderablyandguaranteethestabilizationoftheroadwayinsoftstrata.

References[1]BaiJB,HouChJ.Controlprincipleofsurroundingrocksindeeplanewayanditsapplication.JChinaUnivMiningTechnol2006;35(2):145-8.[2]ZhaoShC.Resourceminingandundergroundengineeringindeephighstressthe175thsummarizeofXiangshanmeeting.ChinJGeosciEvol2001;15(4):295-8.[3]PangLX,YaoDQ,JingChSh.Probeandpracticeofsupportingtechnologywithshotcreteandboltingwiremeshforlargesectioncoallanewaysinsoftseamsbetweensoftroofandsoftfloor.CoalMiningTechnol2002(1):40-3.[4]WeiShL,WangJL,ZhuJX,LiuDL,ZhangDM,HeMF,etal.Floorheavemechanismandsupporttechnologyofgoaf-sidegatewayforre-mininginseamwithsoftroof,softcoalandsoftfloor.CoalSciTechnol2021;37(5):9-12.[5]WangJL,WeiShL.Researchonlanewaysupporttechniqueforcoalpillarminingintheoldminingareaknownforweakseams.JShanxiDatongUniv2021;25(4):51-4.[6]LiJK,LiXB,LiuDSh,ZhengXJ.Numericalsimulationforboltingnetspraycompositesupportofthreesoftcoalseamtunnel.JXi’anUnivSciTechnol2021;29(3):270-2.[7]ZhangN,HouChJ,WangPR.Onboltingsupportoflanewayindeepmine’ssoftcoalseam.ChinJRockMechEng1999;18(4):437-40.[8]LiLF.Lanewaysupportingtechnologyofcoallanewaywithsoftroof,softcoalandsoftfloor.CoalMiningTechnol2007;12(3):59-62.[9]HeMCh,ZhouZhSh,ZhouYF.Surveyofsoftrocktunnelengineering.Xuzhou:ChinauniversityofMiningandtechnologypress;1993.[10]LiXH,WangWJ,HouChJ.Controllingfloorheavewithstrengtheningroofingatewaybynumericalanalysis.JChinaUnivMiningTechnol2003;32(4):436-9.[11]XuJH,ZhuHK,ShiBH,FengMM.Analysisofsupportwaysofroadwayanditssurrounding’scontroleffectinthree-softcoalseam.JChinaUnivMiningTechnol2004;33(1):55-8.[12]XuLM.Discussiononlowcostsupportmethodforgob-sideentrydrivinginseamwithsoftroof,floorandcoal.CoalSciTechnol2001;29(12):23-7.[13]ZhuShY,JuYJ,ZhaoZhZh,LiuDQ.Sitemeasurementonfloordeformationandfailureofmininggatewaysforfullymechanizedtopcoalcavingminingfaceinseamwithsoft,coalandfloor.CoalSciTechnol2021;36(10):10-3.[14]WangShY,ZhangY.Fullymechanizedtopcoalcavingminingtechnologyincombinedseamswithclosedistanceandwithsoftroof,softcoalandsoftfloorinGuobeiMine.CoalSciTechnol2021;37(7):24-7.[15]HeChL.Thecontroltechnologyandengineeringpracticeofthesurroundingrockindeepmine’ssoftcoalseam.JHunanUnivSciTechnol2006;21(3):9-12.

中文翻譯軟巖煤層大跨度巷道的變形研究及其支護(hù)技術(shù)摘要:我們研究了具有軟弱頂?shù)装宓南锏乐ёo(hù)工程方面的圍巖變形破壞機(jī)理,并觀(guān)測(cè)到了軟巖煤層中巷道的大跨度偏移。結(jié)果說(shuō)明,變形面積越大,頂板垮落和側(cè)向位移也就越明顯。我們考慮在軟弱頂?shù)装宓拿簩又胁捎缅^索耦合支護(hù)巷道,這樣錨索就可以固定在關(guān)鍵層中。與此同時(shí),我們?cè)O(shè)計(jì)了一套針對(duì)中國(guó)寧夏石嘴山二礦軟巖煤層巷道支護(hù)的最正確方案?,F(xiàn)場(chǎng)監(jiān)測(cè)結(jié)果說(shuō)明,錨索耦合支護(hù)已經(jīng)到達(dá)了巷道穩(wěn)定性控制和最大限度地減少變形量的目的。關(guān)鍵詞:軟巖煤層;巷道變形;錨索耦合支護(hù);現(xiàn)場(chǎng)監(jiān)測(cè)1引言煤炭為中國(guó)的經(jīng)濟(jì)增長(zhǎng)提供了大局部的能量。但世界各地對(duì)煤炭需求的不斷增加導(dǎo)致了在鄰近或在地球外表上能夠被經(jīng)濟(jì)地提取的煤炭資源的持續(xù)下降。因此,開(kāi)展采礦技術(shù)的趨勢(shì)應(yīng)該集中在深部開(kāi)采,這已是國(guó)際采礦業(yè)一個(gè)重要的研究領(lǐng)域[1,2]。尤其,在深部開(kāi)采技術(shù)中遇到的軟巖巷道,正在成為嚴(yán)重制約煤礦開(kāi)采的主要挑戰(zhàn)之一[3-7]。由具有軟弱頂?shù)装宓?/p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論