2023年安徽省黃山市新世紀校中考數(shù)學(xué)最后沖刺模擬試卷含答案解析_第1頁
2023年安徽省黃山市新世紀校中考數(shù)學(xué)最后沖刺模擬試卷含答案解析_第2頁
2023年安徽省黃山市新世紀校中考數(shù)學(xué)最后沖刺模擬試卷含答案解析_第3頁
2023年安徽省黃山市新世紀校中考數(shù)學(xué)最后沖刺模擬試卷含答案解析_第4頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年安徽省黃山市新世紀校中考數(shù)學(xué)最后沖刺模擬測試卷注意事項1.考生要認真填寫考場號和座位序號。2.測試卷所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列解方程去分母正確的是()A.由x3B.由x-22C.由y3D.由y+122.﹣3的絕對值是()A.﹣3 B.3 C.- D.3.一次函數(shù)y=kx+k(k≠0)和反比例函數(shù)在同一直角坐標系中的圖象大致是()A. B. C. D.4.如圖,有一張三角形紙片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿著箭頭方向剪開,可能得不到全等三角形紙片的是()A. B.C. D.5.如圖,在中,分別在邊邊上,已知,則的值為()A. B. C. D.6.若⊙O的半徑為5cm,OA=4cm,則點A與⊙O的位置關(guān)系是()A.點A在⊙O內(nèi) B.點A在⊙O上 C.點A在⊙O外 D.內(nèi)含7.一艘輪船和一艘漁船同時沿各自的航向從港口O出發(fā),如圖所示,輪船從港口O沿北偏西20°的方向行60海里到達點M處,同一時刻漁船已航行到與港口O相距80海里的點N處,若M、N兩點相距100海里,則∠NOF的度數(shù)為()A.50° B.60° C.70° D.80°8.如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點E是△ABC的內(nèi)心,過點E作EF∥AB交AC于點F,則EF的長為()A. B. C. D.9.下列選項中,可以用來證明命題“若a2>b2,則a>b“是假命題的反例是()A.a(chǎn)=﹣2,b=1 B.a(chǎn)=3,b=﹣2 C.a(chǎn)=0,b=1 D.a(chǎn)=2,b=110.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,正方形ABCD中,AB=3,以B為圓心,AB長為半徑畫圓B,點P在圓B上移動,連接AP,并將AP繞點A逆時針旋轉(zhuǎn)90°至Q,連接BQ,在點P移動過程中,BQ長度的最小值為_____.12.對角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形13.如圖,在平面直角坐標系xOy中,△ABC可以看作是△DEF經(jīng)過若干次圖形的變化(平移、旋轉(zhuǎn)、軸對稱)得到的,寫出一種由△DEF得到△ABC的過程____.14.如圖,小強和小華共同站在路燈下,小強的身高EF=1.8m,小華的身高MN=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是___.15.分式方程的解為x=_____.16.在實數(shù)范圍內(nèi)分解因式:x2y﹣2y=_____.三、解答題(共8題,共72分)17.(8分)如圖,∠MON的邊OM上有兩點A、B在∠MON的內(nèi)部求作一點P,使得點P到∠MON的兩邊的距離相等,且△PAB的周長最?。ūA糇鲌D痕跡,不寫作法)18.(8分)已知二次函數(shù)y=x2-4x-5,與y軸的交點為P,與x軸交于A、B兩點.(點B在點A的右側(cè))(1)當(dāng)y=0時,求x的值.(2)點M(6,m)在二次函數(shù)y=x2-4x-5的圖像上,設(shè)直線MP與x軸交于點C,求cot∠MCB的值.19.(8分)如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°.求這兩座建筑物的高度(結(jié)果保留根號).20.(8分)甲、乙兩人在玩轉(zhuǎn)盤游戲時,把兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤A,B都分成3等份的扇形區(qū)域,并在每一小區(qū)域內(nèi)標上數(shù)字(如圖所示),游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,若指針所指兩個區(qū)域的數(shù)字之和為3的倍數(shù),則甲獲勝;若指針所指兩個區(qū)域的數(shù)字之和為4的倍數(shù),則乙獲勝.如果指針落在分割線上,則需要重新轉(zhuǎn)動轉(zhuǎn)盤.請問這個游戲?qū)住⒁译p方公平嗎?說明理由.21.(8分)如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC、BC.(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;(2)若AD=2,AC=,求AB的長.22.(10分)如圖,點A,B,C,D在同一條直線上,點E,F(xiàn)分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.(1)求證:四邊形BFCE是平行四邊形;(2)若AD=10,DC=3,∠EBD=60°,則BE=時,四邊形BFCE是菱形.23.(12分)如圖1所示是一輛直臂高空升降車正在進行外墻裝飾作業(yè).圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH為2m.當(dāng)起重臂AC長度為8m,張角∠HAC為118°時,求操作平臺C離地面的高度.(果保留小數(shù)點后一位,參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)24.問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是==遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.

2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題(共10小題,每小題3分,共30分)1、D【答案解析】

根據(jù)等式的性質(zhì)2,A方程的兩邊都乘以6,B方程的兩邊都乘以4,C方程的兩邊都乘以15,D方程的兩邊都乘以6,去分母后判斷即可.【題目詳解】A.由x3-1=1-x2,得:2B.由x-22-x4=-1C.由y3-1=y5,得:5D.由y+12=y3+1故選D.【答案點睛】本題考查了解一元一次方程,注意在去分母時,方程兩端同乘各分母的最小公倍數(shù)時,不要漏乘沒有分母的項,同時要把分子(如果是一個多項式)作為一個整體加上括號.2、B【答案解析】

根據(jù)負數(shù)的絕對值是它的相反數(shù),可得出答案.【題目詳解】根據(jù)絕對值的性質(zhì)得:|-1|=1.故選B.【答案點睛】本題考查絕對值的性質(zhì),需要掌握非負數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù).3、C【答案解析】A、由反比例函數(shù)的圖象在一、三象限可知k>0,由一次函數(shù)的圖象過二、四象限可知k<0,兩結(jié)論相矛盾,故選項錯誤;B、由反比例函數(shù)的圖象在二、四象限可知k<0,由一次函數(shù)的圖象與y軸交點在y軸的正半軸可知k>0,兩結(jié)論相矛盾,故選項錯誤;C、由反比例函數(shù)的圖象在二、四象限可知k<0,由一次函數(shù)的圖象過二、三、四象限可知k<0,兩結(jié)論一致,故選項正確;D、由反比例函數(shù)的圖象在一、三象限可知k>0,由一次函數(shù)的圖象與y軸交點在y軸的負半軸可知k<0,兩結(jié)論相矛盾,故選項錯誤,故選C.4、C【答案解析】

根據(jù)全等三角形的判定定理進行判斷.【題目詳解】解:A、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;B、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;C、如圖1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其對應(yīng)邊應(yīng)該是BE和CF,而已知給的是BD=FC=3,所以不能判定兩個小三角形全等,故本選項符合題意;D、如圖2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定兩個小三角形全等,故本選項不符合題意;由于本題選擇可能得不到全等三角形紙片的圖形,故選C.【答案點睛】本題考查了全等三角形的判定,注意三角形邊和角的對應(yīng)關(guān)系是關(guān)鍵.5、B【答案解析】

根據(jù)DE∥BC得到△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)解答.【題目詳解】解:∵,

∴,

∵DE∥BC,

∴△ADE∽△ABC,

∴,

故選:B.【答案點睛】本題考查了相似三角形的判定和性質(zhì),掌握相似三角形的對應(yīng)邊的比等于相似比是解題的關(guān)鍵.6、A【答案解析】

直接利用點與圓的位置關(guān)系進而得出答案.【題目詳解】解:∵⊙O的半徑為5cm,OA=4cm,∴點A與⊙O的位置關(guān)系是:點A在⊙O內(nèi).故選A.【答案點睛】此題主要考查了點與圓的位置關(guān)系,正確①點P在圓外?d>r,②點P在圓上?d=r,③點P在圓內(nèi)?d<r是解題關(guān)鍵.7、C【答案解析】

解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故選C.【答案點睛】本題考查直角三角形的判定,掌握方位角的定義及勾股定理逆定理是本題的解題關(guān)鍵.8、A【答案解析】

過E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依據(jù)△ABC∽△GEF,即可得到EG:EF:GF,根據(jù)斜邊的長列方程即可得到結(jié)論.【題目詳解】過E作EG∥BC,交AC于G,則∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,設(shè)EG=4k=AG,則EF=3k=CF,F(xiàn)G=5k.∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.故選A.【答案點睛】本題考查了相似三角形的判定與性質(zhì),等腰三角形的性質(zhì)以及勾股定理的綜合運用,解決問題的關(guān)鍵是作輔助線構(gòu)相似三角形以及構(gòu)造等腰三角形.9、A【答案解析】

根據(jù)要證明一個結(jié)論不成立,可以通過舉反例的方法來證明一個命題是假命題.由此即可解答.【題目詳解】∵當(dāng)a=﹣2,b=1時,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命題的反例.故選A.【答案點睛】本題考查了命題與定理,要說明數(shù)學(xué)命題的錯誤,只需舉出一個反例即可,這是數(shù)學(xué)中常用的一種方法.10、D【答案解析】

先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【題目詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【答案點睛】本題考查解直角三角形,三角函數(shù)值只與角的大小有關(guān),因而求一個角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.二、填空題(本大題共6個小題,每小題3分,共18分)11、3﹣1【答案解析】

通過畫圖發(fā)現(xiàn),點Q的運動路線為以D為圓心,以1為半徑的圓,可知:當(dāng)Q在對角線BD上時,BQ最小,先證明△PAB≌△QAD,則QD=PB=1,再利用勾股定理求對角線BD的長,則得出BQ的長.【題目詳解】如圖,當(dāng)Q在對角線BD上時,BQ最?。B接BP,由旋轉(zhuǎn)得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.∵四邊形ABCD為正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ長度的最小值為(3﹣1).故答案為3﹣1.【答案點睛】本題是圓的綜合題.考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)和最小值問題,尋找點Q的運動軌跡是本題的關(guān)鍵,通過證明兩三角形全等求出BQ長度的最小值最小值.12、B【答案解析】

根據(jù)平行四邊形的判定與矩形的判定定理,即可求得答案.【題目詳解】∵對角線互相平分的四邊形是平行四邊形,對角線相等的平行四邊形是矩形,∴對角線相等且互相平分的四邊形一定是矩形.故選B.【答案點睛】此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡單,解題的關(guān)鍵是熟記定理.13、先以點O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)90°,再將得到的三角形沿x軸翻折.【答案解析】

根據(jù)旋轉(zhuǎn)的性質(zhì),平移的性質(zhì)即可得到由△DEF得到△ABC的過程.【題目詳解】由題可得,由△DEF得到△ABC的過程為:先以點O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)90°,再將得到的三角形沿x軸翻折.(答案不唯一)故答案為:先以點O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)90°,再將得到的三角形沿x軸翻折.【答案點睛】本題考查了坐標與圖形變化﹣旋轉(zhuǎn),平移,對稱,解題時需要注意:平移的距離等于對應(yīng)點連線的長度,對稱軸為對應(yīng)點連線的垂直平分線,旋轉(zhuǎn)角為對應(yīng)點與旋轉(zhuǎn)中心連線的夾角的大小.14、4m【答案解析】

設(shè)路燈的高度為x(m),根據(jù)題意可得△BEF∽△BAD,再利用相似三角形的對應(yīng)邊正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因為兩人相距4.7m,可得到關(guān)于x的一元一次方程,然后求解方程即可.【題目詳解】設(shè)路燈的高度為x(m),∵EF∥AD,∴△BEF∽△BAD,∴EFAD即1.8x解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴MNAD即1.5x解得:DN=x﹣1.5,∵兩人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路燈AD的高度是4m.15、2【答案解析】根據(jù)分式方程的解法,先去分母化為整式方程為2(x+1)=3x,解得x=2,檢驗可知x=2是原分式方程的解.故答案為2.16、y(x+)(x﹣)【答案解析】

先提取公因式y(tǒng)后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續(xù)分解.【題目詳解】x2y-2y=y(x2-2)=y(x+)(x-).故答案為y(x+)(x-).【答案點睛】本題考查實數(shù)范圍內(nèi)的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數(shù)范圍內(nèi)進行因式分解的式子的結(jié)果一般要分到出現(xiàn)無理數(shù)為止.三、解答題(共8題,共72分)17、詳見解析【答案解析】

作∠MON的角平分線OT,在ON上截取OA′,使得OA′=OA,連接BA′交OT于點P,點P即為所求.【題目詳解】解:如圖,點P即為所求.【答案點睛】本題主要考查作圖-復(fù)雜作圖,利用了角平分線的性質(zhì),難點在于利用軸對稱求最短路線的問題.18、(1),;(2)【答案解析】

(1)當(dāng)y=0,則x2-4x-5=0,解方程即可得到x的值.(2)由題意易求M,P點坐標,再求出MP的直線方程,可得cot∠MCB.【題目詳解】(1)把代入函數(shù)解析式得,即,解得:,.(2)把代入得,即得,∵二次函數(shù),與軸的交點為,∴點坐標為.設(shè)直線的解析式為,代入,得解得,∴,∴點坐標為,在中,又∵∴.【答案點睛】本題考查的知識點是拋物線與x軸的交點,二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練的掌握拋物線與x軸的交點,二次函數(shù)的性質(zhì).19、甲建筑物的高AB為(30-30)m,乙建筑物的高DC為30m【答案解析】

如圖,過A作AF⊥CD于點F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC?tan60°=30m,∴乙建筑物的高度為30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度為(30﹣30)m.20、見解析【答案解析】

解:不公平,理由如下:列表得:12321,22,23,231,32,33,341,42,43,4由表可知共有9種等可能的結(jié)果,其中數(shù)字之和為3的倍數(shù)的有3種結(jié)果,數(shù)字之和為4的倍數(shù)的有2種,則甲獲勝的概率為、乙獲勝的概率為,∵,∴這個游戲?qū)?、乙雙方不公平.【答案點睛】考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)證明見解析(2)3【答案解析】

(1)連接,由為的中點,得到,等量代換得到,根據(jù)平行線的性質(zhì)得到,即可得到結(jié)論;(2)連接,由勾股定理得到,根據(jù)切割線定理得到,根據(jù)勾股定理得到,由圓周角定理得到,即可得到結(jié)論.【題目詳解】相切,連接,∵為的中點,∴,∵,∴,∴,∴,∵,∴,∴直線與相切;方法:連接,∵,,∵,∴,∵是的切線,∴,∴,∴,∵為的中點,∴,∵為的直徑,∴,∴.方法:∵,易得,∴,∴.【答案點睛】本題考查了直線與圓的位置關(guān)系,切線的判定和性質(zhì),圓周角定理,勾股定理,平行線的性質(zhì),切割線定理,熟練掌握各定理是解題的關(guān)鍵.22、(1)證明見測試卷解析;(2)1.【答案解析】

測試卷分析:(1)由AE=DF,∠A=∠D,AB=DC,易證得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四邊形BFCE是平行四邊形;(2)當(dāng)四邊形BFCE是菱形時,BE=CE,根據(jù)菱形的性質(zhì)即可得到結(jié)果.測試卷解析:(1)∵AB=DC,∴AC=DB,在△AEC和△DFB中,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四邊形BFCE是平行四邊形;(2)當(dāng)四邊形BFCE是菱形時,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,∴當(dāng)BE=1時,四邊形BFCE是菱形,故答案為1.【考點】平行四邊形的判定;菱形的判定.23、5.8【答案解析】

過點作于點,過點作于點,易得四邊形為矩形,則,再計算出,在中,利用正弦可計算出CF的長度,然后計算CF+EF即可.【題目詳解】解:如圖,過點作于點,過點作于點,.又,.∴四邊形為矩形.在中,,..答:操作平臺離地面的高度約為.【答案點睛】本題考查了解直角三角形的應(yīng)用,先將實際問題抽象為數(shù)學(xué)問題,然后利用勾股定理和銳角三角函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論