用待定系數(shù)法求二次函數(shù)解析式(專(zhuān)題復(fù)習(xí))(課堂)課件_第1頁(yè)
用待定系數(shù)法求二次函數(shù)解析式(專(zhuān)題復(fù)習(xí))(課堂)課件_第2頁(yè)
用待定系數(shù)法求二次函數(shù)解析式(專(zhuān)題復(fù)習(xí))(課堂)課件_第3頁(yè)
用待定系數(shù)法求二次函數(shù)解析式(專(zhuān)題復(fù)習(xí))(課堂)課件_第4頁(yè)
用待定系數(shù)法求二次函數(shù)解析式(專(zhuān)題復(fù)習(xí))(課堂)課件_第5頁(yè)
已閱讀5頁(yè),還剩27頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專(zhuān)題復(fù)習(xí)用待定系數(shù)法求二次函數(shù)解析式1專(zhuān)題復(fù)習(xí)用待定系數(shù)法求二次函數(shù)解析式1復(fù)習(xí)目標(biāo):

1.理解并記住二次函數(shù)解析式的三種形式:一般式,頂點(diǎn)式,兩根式2.靈活應(yīng)用二次函數(shù)的三種形式,以便在用待定系數(shù)法求解二次函數(shù)解析式時(shí)減少未知數(shù)的個(gè)數(shù),簡(jiǎn)化運(yùn)算過(guò)程.2復(fù)習(xí)目標(biāo):2待定系數(shù)法求函數(shù)的解析式

一般步驟是:(1)寫(xiě)出函數(shù)解析式的一般式,其中包括未知的系數(shù);(2)把自變量與函數(shù)的對(duì)應(yīng)值代入函數(shù)解析式中,得到關(guān)于待定系數(shù)的方程或方程組。(3)解方程(組)求出待定系數(shù)的值,從而寫(xiě)出函數(shù)解析式。3待定系數(shù)法求函數(shù)的解析式

一般步驟是:(1)寫(xiě)出函數(shù)解析式的一、方法:1.一般式:y=ax2+bx+c(a≠0)

已知圖象上三點(diǎn)坐標(biāo),特別是已知函數(shù)圖象與y軸的交點(diǎn)坐標(biāo)(0,c)時(shí),使用一般式很方便.

例1.已知二次函數(shù)圖象經(jīng)過(guò)A(2,-4),B(0,2),C(-1,2)三點(diǎn),求此函數(shù)的解析式.4一、方法:1.一般式:y=ax2+bx+c(a≠0)4解:設(shè)二次函數(shù)解析式為y=ax2+bx+c∵

圖象過(guò)B(0,2)∴

c=2∴

y=ax2+bx+2∵圖象過(guò)A(2,-4),C(-1,2)兩點(diǎn)∴

-4=4a+2b+2

2=a-b+2

解得

a=-1,b=-1∴

函數(shù)的解析式為:y=-x2-x+25解:設(shè)二次函數(shù)解析式為y=ax2+bx+c52.頂點(diǎn)式

y=a(x-h)2+k(a≠0)已知對(duì)稱(chēng)軸方程x=h、最值k或頂點(diǎn)坐標(biāo)(h,k)時(shí)優(yōu)先選用頂點(diǎn)式。例2.已知一個(gè)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(4,-3),并且當(dāng)x=3時(shí)有最大值4,試確定這個(gè)二次函數(shù)的解析式.62.頂點(diǎn)式

y=a(x-h)2+k(a解法1:(利用頂點(diǎn)式)設(shè)二次函數(shù)解析式為:y=a(x+h)2+k

(a≠0)∵

當(dāng)x=3時(shí),有最大值4∴

頂點(diǎn)坐標(biāo)為(3,4)∴

h=-3,k=4∴

y=a(x-3)2+4∵

函數(shù)圖象過(guò)點(diǎn)(4,-3)∴

a(4-3)2+4=-3∴

a=-7∴

y=-7(x-3)2+4=-7x2+42x-59∴

二次函數(shù)的解析式為:y=-7x2+42x-59解法2:(利用一般式)設(shè)二次函數(shù)解析式為:y=ax2+bx+c(a≠0)由題意知

16a+4b+c=-3

-b/2a=3

(4ac-b2)/4a=4解方程組得:

a=-7b=42c=-59∴

二次函數(shù)的解析式為:y=-7x2+42x-597解法1:(利用頂點(diǎn)式)解法2:(利用一般式)73.交點(diǎn)式

y=a(x-x1)(x-x2)

知道拋物線與x軸的兩個(gè)交點(diǎn)的坐標(biāo),或一個(gè)交點(diǎn)的坐標(biāo)及對(duì)稱(chēng)軸方程或頂點(diǎn)的橫坐標(biāo)時(shí)選用兩根式比較簡(jiǎn)便.(1)當(dāng)△=b2-4ac≥0,拋物線與x軸相交y=ax2+bx+c=a(x-x1)(x-x2)

△=b2-4ac>0,交點(diǎn)有兩個(gè),分別是:(x1,0)和(x2,0)

△=b2-4ac=0,交點(diǎn)只有一個(gè)即頂點(diǎn)[-b/2a,(4ac-b2)/4a]

△=b2-4ac<0,無(wú)交點(diǎn)

83.交點(diǎn)式

y=a(x-x1)(x-x2)8(2)當(dāng)△=b2-4ac<0時(shí),方程ax2+bx+c=0無(wú)解,二次三項(xiàng)式ax2+bx+c不能分解,拋物線與x軸不相交.(3)若拋物線與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1、x2,那么對(duì)稱(chēng)軸方程為:

x=(x1+x2)/29(2)當(dāng)△=b2-4ac<0時(shí),9例3.二次函數(shù)y=ax2+bx+c的圖象過(guò)點(diǎn)A(0,-5),B(5,0)兩點(diǎn),它的對(duì)稱(chēng)軸為直線x=3,求這個(gè)二次函數(shù)的解析式.10例3.二次函數(shù)y=ax2+bx+c的圖象過(guò)點(diǎn)A(0,-5)解:∵二次函數(shù)的圖象過(guò)點(diǎn)B(5,0),對(duì)稱(chēng)軸為直線x=3設(shè)拋物線與x軸的另一個(gè)交點(diǎn)C的坐標(biāo)為(x1,0)則對(duì)稱(chēng)軸:x=(x1+x2)/2即:(5+x1)/2=3

∴x1=1∴c點(diǎn)的坐標(biāo)為(1,0)設(shè)二次函數(shù)解析式為:y=a(x-1)(x-5)∵圖象過(guò)A(0,-5)∴-5=a(0-1)(0-5)即-5=5a,∴a=-1∴

y=-(x-1)(x-5)=-x2+6x-511解:∵二次函數(shù)的圖象過(guò)點(diǎn)B(5,0),對(duì)稱(chēng)軸為直線x=3(二)練習(xí)題

二次函數(shù)圖象經(jīng)過(guò)點(diǎn)(1,4),(-1,0)和(3,0)三點(diǎn),求二次函數(shù)的解析式.12(二)練習(xí)題

二次函數(shù)圖象經(jīng)過(guò)點(diǎn)(1,4),(-解法1:(一般式)設(shè)二次函數(shù)解析式為y=ax2+bx+c∵二次函數(shù)圖象過(guò)點(diǎn)(1,4),(-1,0)和(3,0)∴

a+b+c=4

a-b+c=0

9a+3b+c=0

③①-②得:2b=4∴

b=2

代入②、③得:a+c=2

9a+c=-6

⑤-④得:8a=-8,∴a=-1

代入④

得:c=3∴

函數(shù)的解析式為:y=-x2+2x+313解法1:(一般式)13解法2:(頂點(diǎn)式)∵

拋物線與x軸相交兩點(diǎn)(-1,0)和(3,0),∴1=(-1+3)/2∴

點(diǎn)(1,4)為拋物線的頂點(diǎn)由題意設(shè)二次函數(shù)解析式為:y=a(x-h)2+k

y=a(x-1)2+4

∵拋物線過(guò)點(diǎn)(-1,0)∴0=a(-1-1)2+4得a=-1∴函數(shù)的解析式為:y=-1(x-1)2+4=-x2+2x+314解法2:(頂點(diǎn)式)14解法3:(交點(diǎn)式)由題意可知兩根為x1=-1、x2=3設(shè)二次函數(shù)解析式為y=a(x-x1)(x-x2)

則有:y=a(x+1)(x-3)∵函數(shù)圖象過(guò)點(diǎn)(1,4)∴4=a(1+1)(1-3)得a=-1∴函數(shù)的解析式為:

y=-1(x+1)(x-3)=-x2+2x+315解法3:(交點(diǎn)式)15再見(jiàn)!16再見(jiàn)!16

專(zhuān)題復(fù)習(xí)用待定系數(shù)法求二次函數(shù)解析式17專(zhuān)題復(fù)習(xí)用待定系數(shù)法求二次函數(shù)解析式1復(fù)習(xí)目標(biāo):

1.理解并記住二次函數(shù)解析式的三種形式:一般式,頂點(diǎn)式,兩根式2.靈活應(yīng)用二次函數(shù)的三種形式,以便在用待定系數(shù)法求解二次函數(shù)解析式時(shí)減少未知數(shù)的個(gè)數(shù),簡(jiǎn)化運(yùn)算過(guò)程.18復(fù)習(xí)目標(biāo):2待定系數(shù)法求函數(shù)的解析式

一般步驟是:(1)寫(xiě)出函數(shù)解析式的一般式,其中包括未知的系數(shù);(2)把自變量與函數(shù)的對(duì)應(yīng)值代入函數(shù)解析式中,得到關(guān)于待定系數(shù)的方程或方程組。(3)解方程(組)求出待定系數(shù)的值,從而寫(xiě)出函數(shù)解析式。19待定系數(shù)法求函數(shù)的解析式

一般步驟是:(1)寫(xiě)出函數(shù)解析式的一、方法:1.一般式:y=ax2+bx+c(a≠0)

已知圖象上三點(diǎn)坐標(biāo),特別是已知函數(shù)圖象與y軸的交點(diǎn)坐標(biāo)(0,c)時(shí),使用一般式很方便.

例1.已知二次函數(shù)圖象經(jīng)過(guò)A(2,-4),B(0,2),C(-1,2)三點(diǎn),求此函數(shù)的解析式.20一、方法:1.一般式:y=ax2+bx+c(a≠0)4解:設(shè)二次函數(shù)解析式為y=ax2+bx+c∵

圖象過(guò)B(0,2)∴

c=2∴

y=ax2+bx+2∵圖象過(guò)A(2,-4),C(-1,2)兩點(diǎn)∴

-4=4a+2b+2

2=a-b+2

解得

a=-1,b=-1∴

函數(shù)的解析式為:y=-x2-x+221解:設(shè)二次函數(shù)解析式為y=ax2+bx+c52.頂點(diǎn)式

y=a(x-h)2+k(a≠0)已知對(duì)稱(chēng)軸方程x=h、最值k或頂點(diǎn)坐標(biāo)(h,k)時(shí)優(yōu)先選用頂點(diǎn)式。例2.已知一個(gè)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(4,-3),并且當(dāng)x=3時(shí)有最大值4,試確定這個(gè)二次函數(shù)的解析式.222.頂點(diǎn)式

y=a(x-h)2+k(a解法1:(利用頂點(diǎn)式)設(shè)二次函數(shù)解析式為:y=a(x+h)2+k

(a≠0)∵

當(dāng)x=3時(shí),有最大值4∴

頂點(diǎn)坐標(biāo)為(3,4)∴

h=-3,k=4∴

y=a(x-3)2+4∵

函數(shù)圖象過(guò)點(diǎn)(4,-3)∴

a(4-3)2+4=-3∴

a=-7∴

y=-7(x-3)2+4=-7x2+42x-59∴

二次函數(shù)的解析式為:y=-7x2+42x-59解法2:(利用一般式)設(shè)二次函數(shù)解析式為:y=ax2+bx+c(a≠0)由題意知

16a+4b+c=-3

-b/2a=3

(4ac-b2)/4a=4解方程組得:

a=-7b=42c=-59∴

二次函數(shù)的解析式為:y=-7x2+42x-5923解法1:(利用頂點(diǎn)式)解法2:(利用一般式)73.交點(diǎn)式

y=a(x-x1)(x-x2)

知道拋物線與x軸的兩個(gè)交點(diǎn)的坐標(biāo),或一個(gè)交點(diǎn)的坐標(biāo)及對(duì)稱(chēng)軸方程或頂點(diǎn)的橫坐標(biāo)時(shí)選用兩根式比較簡(jiǎn)便.(1)當(dāng)△=b2-4ac≥0,拋物線與x軸相交y=ax2+bx+c=a(x-x1)(x-x2)

△=b2-4ac>0,交點(diǎn)有兩個(gè),分別是:(x1,0)和(x2,0)

△=b2-4ac=0,交點(diǎn)只有一個(gè)即頂點(diǎn)[-b/2a,(4ac-b2)/4a]

△=b2-4ac<0,無(wú)交點(diǎn)

243.交點(diǎn)式

y=a(x-x1)(x-x2)8(2)當(dāng)△=b2-4ac<0時(shí),方程ax2+bx+c=0無(wú)解,二次三項(xiàng)式ax2+bx+c不能分解,拋物線與x軸不相交.(3)若拋物線與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1、x2,那么對(duì)稱(chēng)軸方程為:

x=(x1+x2)/225(2)當(dāng)△=b2-4ac<0時(shí),9例3.二次函數(shù)y=ax2+bx+c的圖象過(guò)點(diǎn)A(0,-5),B(5,0)兩點(diǎn),它的對(duì)稱(chēng)軸為直線x=3,求這個(gè)二次函數(shù)的解析式.26例3.二次函數(shù)y=ax2+bx+c的圖象過(guò)點(diǎn)A(0,-5)解:∵二次函數(shù)的圖象過(guò)點(diǎn)B(5,0),對(duì)稱(chēng)軸為直線x=3設(shè)拋物線與x軸的另一個(gè)交點(diǎn)C的坐標(biāo)為(x1,0)則對(duì)稱(chēng)軸:x=(x1+x2)/2即:(5+x1)/2=3

∴x1=1∴c點(diǎn)的坐標(biāo)為(1,0)設(shè)二次函數(shù)解析式為:y=a(x-1)(x-5)∵圖象過(guò)A(0,-5)∴-5=a(0-1)(0-5)即-5=5a,∴a=-1∴

y=-(x-1)(x-5)=-x2+6x-527解:∵二次函數(shù)的圖象過(guò)點(diǎn)B(5,0),對(duì)稱(chēng)軸為直線x=3(二)練習(xí)題

二次函數(shù)圖象經(jīng)過(guò)點(diǎn)(1,4),(-1,0)和(3,0)三點(diǎn),求二次函數(shù)的解析式.28(二)練習(xí)題

二次函數(shù)圖象經(jīng)過(guò)點(diǎn)(1,4),(-解法1:(一般式)設(shè)二次函數(shù)解析式為y=ax2+bx+c∵二次函數(shù)圖象過(guò)點(diǎn)(1,4),(-1,0)和(3,0)∴

a+b+c=4

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論