版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Unit4:TrigonometricFunctions
Lesson2:SinusoidalFunctionsUnit4:TrigonometricFunctionSinusoidagraphwhoseshapelookslikethegraphofsin(x)sin,cosandtransformationsofthesefunctionsareallsinusoids(AKAsinusoidalfunctions) SinusoidagraphwhoseshapeloTransformationsInLesson1,welookedatthedifferentfunctiontransformationsWecansummarizethesewiththegeneralfunctiontransformation
Ifweapplythistothesineandcosinefunctions,wegetTransformationsInLesson1,weTransformationsForsimplicity,considerthetransformedsinefunction:verticalstretches,compressions&reflectionsGivesyoutheamplitudeHorizontalstretches,compressions&reflectionsGivesyoutheperiod:ShiftsupordownGivesyoutheaxisofcurveShiftsleftorrightCalledthephaseshiftTransformationsForsimplicity,Example1Whatistheamplitude,period,phaseshiftandaxisofcurveofExample1WhatistheamplitudeExample1:SolutionIngeneral:Wehave:a=3c=–1k=2theamplitudeis3theaxisofcurveisy=–1d=thephaseshiftistheperiodisExample1:SolutionIngeneral:Example2Whatistheamplitude,period,phaseshiftandverticalshiftofExample2WhatistheamplitudeExample2:SolutionIngeneral:Wehave:FACTOR!a=–2c=6theamplitudeis2theaxisofcurveisy=6k=0.5IgnorethenegativeExample2:SolutionIngeneral:Example2:NotesThetipoftheday:Alwaysfactorthecoefficientonthex-termtocorrectlyidentifythetransformationsIfyoudon’t,yourphaseshiftwillbeincorrectReminder:Theamplitudeistheverticaldistancefromtheaxisofcurvetothemaximumvalue.So,althoughthevalueofacanbenegative,theamplitudeisalwayspositiveExample2:NotesThetipoftheExample3Whatistheequationofthecosinefunctionafterithasbeenstretchedsothatitsperiodis,itsamplitudeis8andithasexperiencedaphaseshiftoftotheleftandhasbeenshiftedup1unitExample3WhatistheequationExample3:Solutionamplitudeis8phaseshiftis(left)ShifteduponeunitTheperiodisa=8d=c=1Example3:SolutionamplitudeiExample4Whatistheequationofthesinefunctionafterithasbeenstretchedsothatitsperiodis4,ithasexperiencedaphaseshiftoftotherightandithasbeenreflectedinthex-axisExample4WhatistheequationExample4:SolutionamplitudeisunchangedFunctionisreflectedinthex-axisphaseshiftis(right)ThereisnoverticalshiftTheperiodis4a=1d=c=0a=-1Example4:SolutionamplitudeiExample4:NotesItispossiblefortheperiodtonotbeamultipleofπIfthisisthecase,thek-valuewillbeintermsofπTheperiodisrarelyamultipleofπinreal-worldapplicationsEx.motionofapendulum,theheightofthetides,voltageinanACcircuitExample4:NotesItispossibleTheGraphsofsin&cosInordertounderstandtransformationsofsinandcos,it’scrucialfortoknowwhatf(x)=sinxandf(x)=cosxlooklikeTohelpyouwiththis,alwaysthinkofthefive“keypoints”ofoneperiodforeachfunction:sinhasthreezeroes,onemaxandonemin.Eachperiodstartsontheaxisofcurvecoshastwozeroes,twomaxandonemin.EachperiodstartsatthemaximumBecausethesefunctionsareperiodicifyouneedmorethanoneperiod,simplyrepeatthepatternTheGraphsofsin&cosInordeHowtoDeterminetheEquationFromaGraphDrawahorizontallinethatdividesthefunctioninhalf(axisofcurve)Locatethestartingpointofasine/cosineperiodandmarkthispointwithanA.Locatetheendingpointofasine/cosineperiodandmarkthispointwithaB.Determinethehorizontaldistancebetweenthesetwopoints(theperiod).Determinetheverticaldistancefromtheaxisofcurvetothemaximumvalue(amplitude)Becausethex-coordinateofthestartingpointforasine/cosineperiodiszero,thex-coordinateofAgivesyouthephaseshiftHowtoDeterminetheEquationExample5Useasinecurvetodeterminetheequationofthefunctiongivenbelow-12Example5UseasinecurvetodExample5:SolutionAB12-12Axisofcurveis-9PeriodisπAmplitudeis3PhaseshiftisExample5:SolutionAB12-12AxisExample5:Solutionamplitudeis3phaseshiftis(right)Axisofcurveis-9Theperiodisa=3d=c=-9Example5:SolutionamplitudeiExample6RepeatExample5,butthistimeuseacosinecurvetodeterminetheequationExample6RepeatExample5,butExample6:SolutionAB12-12Axisofcurveis-9PeriodisπAmplitudeis3PhaseshiftisExample6:SolutionAB12-12AxisExample6:Solutionamplitudeis3phaseshiftis(left)Axisofcurveis-9Theperiodisa=3d=c=-9Example6:SolutionamplitudeiExample6:NotesWhenweusedacosinetomodelthefunctioninExample5,theonlychangewastothephaseshift.Thereasonforthis,isthatsineandcosinearethesamefunction–theonlydifferenceisaphaseshift:f(x)=sinxf(x)=cosxorExample6:NotesWhenweusedSummaryAsinusoidalfunctionisatransformedsineorcosinefunctionand,ingeneral,hastheequation:YoucandeterminetheequationofasinusoidusingasineorcosinefunctiongivenalistofpropertiesoragrapharelatestotheamplitudeamplitudeMUSTbepositivekrelatestotheperiodPerioddoesnotneedtobeintermsofπdisthephaseshiftcistheverticalshift(axisofcurve)Don’tforgettofactoroutwhat’sinfrontofx!f(x)=sinxandf(x)=cosxdifferonlybyaphaseshiftofSummaryAsinusoidalfunctioniPracticeProblemsP.275-277#1-6,8-13Note:Anygraphs/sketchescanbedoneusingyourTI-83ortheprogram“Graph”PracticeProblemsP.275-277#1Unit4:TrigonometricFunctions
Lesson2:SinusoidalFunctionsUnit4:TrigonometricFunctionSinusoidagraphwhoseshapelookslikethegraphofsin(x)sin,cosandtransformationsofthesefunctionsareallsinusoids(AKAsinusoidalfunctions) SinusoidagraphwhoseshapeloTransformationsInLesson1,welookedatthedifferentfunctiontransformationsWecansummarizethesewiththegeneralfunctiontransformation
Ifweapplythistothesineandcosinefunctions,wegetTransformationsInLesson1,weTransformationsForsimplicity,considerthetransformedsinefunction:verticalstretches,compressions&reflectionsGivesyoutheamplitudeHorizontalstretches,compressions&reflectionsGivesyoutheperiod:ShiftsupordownGivesyoutheaxisofcurveShiftsleftorrightCalledthephaseshiftTransformationsForsimplicity,Example1Whatistheamplitude,period,phaseshiftandaxisofcurveofExample1WhatistheamplitudeExample1:SolutionIngeneral:Wehave:a=3c=–1k=2theamplitudeis3theaxisofcurveisy=–1d=thephaseshiftistheperiodisExample1:SolutionIngeneral:Example2Whatistheamplitude,period,phaseshiftandverticalshiftofExample2WhatistheamplitudeExample2:SolutionIngeneral:Wehave:FACTOR!a=–2c=6theamplitudeis2theaxisofcurveisy=6k=0.5IgnorethenegativeExample2:SolutionIngeneral:Example2:NotesThetipoftheday:Alwaysfactorthecoefficientonthex-termtocorrectlyidentifythetransformationsIfyoudon’t,yourphaseshiftwillbeincorrectReminder:Theamplitudeistheverticaldistancefromtheaxisofcurvetothemaximumvalue.So,althoughthevalueofacanbenegative,theamplitudeisalwayspositiveExample2:NotesThetipoftheExample3Whatistheequationofthecosinefunctionafterithasbeenstretchedsothatitsperiodis,itsamplitudeis8andithasexperiencedaphaseshiftoftotheleftandhasbeenshiftedup1unitExample3WhatistheequationExample3:Solutionamplitudeis8phaseshiftis(left)ShifteduponeunitTheperiodisa=8d=c=1Example3:SolutionamplitudeiExample4Whatistheequationofthesinefunctionafterithasbeenstretchedsothatitsperiodis4,ithasexperiencedaphaseshiftoftotherightandithasbeenreflectedinthex-axisExample4WhatistheequationExample4:SolutionamplitudeisunchangedFunctionisreflectedinthex-axisphaseshiftis(right)ThereisnoverticalshiftTheperiodis4a=1d=c=0a=-1Example4:SolutionamplitudeiExample4:NotesItispossiblefortheperiodtonotbeamultipleofπIfthisisthecase,thek-valuewillbeintermsofπTheperiodisrarelyamultipleofπinreal-worldapplicationsEx.motionofapendulum,theheightofthetides,voltageinanACcircuitExample4:NotesItispossibleTheGraphsofsin&cosInordertounderstandtransformationsofsinandcos,it’scrucialfortoknowwhatf(x)=sinxandf(x)=cosxlooklikeTohelpyouwiththis,alwaysthinkofthefive“keypoints”ofoneperiodforeachfunction:sinhasthreezeroes,onemaxandonemin.Eachperiodstartsontheaxisofcurvecoshastwozeroes,twomaxandonemin.EachperiodstartsatthemaximumBecausethesefunctionsareperiodicifyouneedmorethanoneperiod,simplyrepeatthepatternTheGraphsofsin&cosInordeHowtoDeterminetheEquationFromaGraphDrawahorizontallinethatdividesthefunctioninhalf(axisofcurve)Locatethestartingpointofasine/cosineperiodandmarkthispointwithanA.Locatetheendingpointofasine/cosineperiodandmarkthispointwithaB.Determinethehorizontaldistancebetweenthesetwopoints(theperiod).Determinetheverticaldistancefromtheaxisofcurvetothemaximumvalue(amplitude)Becausethex-coordinateofthestartingpointforasine/cosineperiodiszero,thex-coordinateofAgivesyouthephaseshiftHowtoDeterminetheEquationExample5Useasinecurvetodeterminetheequationofthefunctiongivenbelow-12Example5UseasinecurvetodExample5:SolutionAB12-12Axisofcurveis-9PeriodisπAmplitudeis3PhaseshiftisExample5:SolutionAB12-12AxisExample5:Solutionamplitudeis3phaseshiftis(right)Axisofcurveis-9Theperiodisa=3d=c=-9Example5:SolutionamplitudeiExample6RepeatExample5,butthistimeuseacosinecurvetodeterminetheequationExample6RepeatExample5,butExample6:SolutionAB12-12Axisofcurveis-9PeriodisπAmplitudeis3Pha
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年駕校與學(xué)員簽訂的二零二五年度駕駛培訓(xùn)學(xué)員心理輔導(dǎo)合同
- 二零二五年度股權(quán)贈與合同:公司股東權(quán)益轉(zhuǎn)讓與股權(quán)激勵(lì)實(shí)施及戰(zhàn)略調(diào)整
- 二零二五版智能隔層施工與設(shè)備安裝合同規(guī)范2篇
- 二零二五版石材鋼架施工項(xiàng)目施工圖紙與技術(shù)交底合同2篇
- 二零二五版玫瑰花產(chǎn)業(yè)投資基金合作協(xié)議4篇
- 2025年度注冊化工工藝工程師合作協(xié)議(化工工藝優(yōu)化)2篇
- 二零二五年度酒店管理公司合作協(xié)議3篇
- 2025年度個(gè)人健康保險(xiǎn)產(chǎn)品銷售合同范本4篇
- 2024系統(tǒng)維護(hù)服務(wù)合同模板
- 2025年度鋁合金門窗行業(yè)論壇策劃勞務(wù)分包服務(wù)合同4篇
- 醫(yī)院三基考核試題(康復(fù)理療科)
- 2024-2030年中國招標(biāo)代理行業(yè)深度分析及發(fā)展前景與發(fā)展戰(zhàn)略研究報(bào)告
- 醫(yī)師定期考核 (公共衛(wèi)生)試題庫500題(含答案)
- 基因突變和基因重組(第1課時(shí))高一下學(xué)期生物人教版(2019)必修2
- 內(nèi)科學(xué)(醫(yī)學(xué)高級):風(fēng)濕性疾病試題及答案(強(qiáng)化練習(xí))
- 音樂劇好看智慧樹知到期末考試答案2024年
- 辦公設(shè)備(電腦、一體機(jī)、投影機(jī)等)采購 投標(biāo)方案(技術(shù)方案)
- 案卷評查培訓(xùn)課件模板
- 2024年江蘇省樣卷五年級數(shù)學(xué)上冊期末試卷及答案
- 人教版初中英語七八九全部單詞(打印版)
- 波浪理論要點(diǎn)圖解完美版
評論
0/150
提交評論