




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
StatisticalThermodynamicsandChemicalKineticsStateKeyLaboratoryforPhysicalChemistryofSolidSurfaces廈門大學(xué)固體表面物理化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室Lecture9May12,2003StatisticalThermodynamicsandChapter9ComplexReactions9.1Exactanalyticsolutionsforcomplexreactions9.1.1IntroductionMostchemicalprocessesarecomplex,i.e.theyconsistofanumberofcoupledelementaryreactions.Thesecomplexreactionscanbedividedintoseveralclasses:(1)opposingorreversiblereactions,(2)consecutivereactions,(3)parallelreactions,and(4)mixedreactions.Inthischapter,weexaminemethodsfordeterminingexactanalyticsolutionsforthetimedependenceofconcentrationsofspeciesinvolvedincomplexreactions.Chapter9ComplexReactionsReversiblereactionsInreversiblereactionsoropposingreactions,theproductsoftheinitialreactioncanproceedtore-formtheoriginalsubstances.Achemicalexampleofthisisthecis-transisomerizationof1,2-dichloroethylene:(9-1)Assuch,thesimplestreversiblereactionisoftheform
(9-2)andisfirstorderineachdirection.Thedifferentialequationforthismechanismis(9-3)(9-4)9.1.2ReversiblereactionsIfitisassumedthatbothA1andA2arepresentinthesystemattimet=0,thatis,[A1]=[A1]0and[A2]=[A2]0,thenatanytimeafterwordsthetotalamountofreactantremainingandnewproductformedmustequaltheinitialamountofthereactantsbeforereactions.Hence,
[A1]0+[A2]0=[A1]+[A2](9-5)Solvingfor[A2],weobtain
[A2]
=[A1]0+[A2]0-[A1](9-6)andsubstitutingthisintoequation(9-3)yields(9-7)IfitisassumedthatbothA1Tofindthesolutionofequation(9-7)weintroduceavariablem,definedas(9-8)Thisallowsustorewriteequation(9-7)as(9-9)whichwemaythenintegrate(9-10)Thesolutionis(9-11)TofindthesolutionofequatIfonly[A1]ispresentinthesysteminitially,att=0,thenthesolutionreducesto(9-12)whichisjust(9-13)Usingthemassconservationconstraint[A1]0=[A1]+[A2],wecanobtainthesolutionfor[A2]:
(9-14)Whenequilibriumisreached,theindividualreactionsmustbebalanced;inotherwords,thereactionABmustoccurjustasfrequentlyasthereversereaction.Theforwardandreversereactionsoccuratthesamerate.Ifonly[A1]ispresentinthConsequently,forreaction(9-2)atequilibrium,(9-15)and(9-16)andwehavethefollowingdefinitionoftheequilibriumconstantKeqexpressedintermsofrateconstants:
(9-17)Thesameargumentcanbeextendedtoareversiblereactionthatoccursinmultiplestages.
Consequently,forreaction(First-orderreversiblereactionsinvolvingtwostepsReversiblereactionsmaybedistinguishedbynumberofstagesandthenumberofinitialreactantsinvolvedinthereaction.Here,weconsiderthecompletederivationforfirstorderreversiblereactionsinvolvingonlytwostages,thatis,(9-18)Thekineticequationsforthesystemare
(9-19)(9-20)(9-21)First-orderreversibleWeassumethatatt=0,[A1]=[A1]0,and[A2]0=[A3]0=0andthattheamountsofA1,A2andA3whichhavereactedatalatertimesatisfytheequation:
[A1]0=[A1]+[A2]+[A3](9-22)Bytheprincipleofdetailedbalance,wehaveand(9-23,24)Usingequations(9-22)-(9-24)gives(9-25)So(9-26)Weassumethatatt=0,[A1]=[ASubstitutingequation(9-26)intoequation(9-19)weobtainthenewfirst-orderdifferentialequaion:
(9-27)Solvingthiseuationusingstandardmethods,wehave(9-28)Substitutingequation(9-22),(9-26)and(9-28)intothisexpression,wehave,uponsimplification,(9-29)
Substitutingequation(9-26)iAst,
(9-30)(9-31)(9-32)andthesystemistheninastateofequilibrium.Themisuseoftheprincipleariseswhentheinter-mediateA2isdifficulttodetect,sothatanexperimentalistmightthinkthatA1A3isanelementaryreaction.Thustheequilibriumconstantfor[A3]e/[A1]emightbetakentobek1/k-2.However,sinceA1A3isnotanelementaryreaction,thisconclusionisincorrect.
Ast,TodetermineK=[A3]e/[A1]ecorrectly,theequilibriumofeachelementaryreactionmustbeconsidered,thatis,equations(9-23)and(9-24)mustbeused.ThecorrectexpressionofKcanbefound:
(9-33)
Anotherexampleofafirst-orderreversiblereactioninvolvingonlytwostagesisthecyclicreaction
TodetermineK=[A3]e/[A1]ecFirstandsecondorderreversiblereactions.Areversiblereactionmaybeofmixedorder,suchas,
AnexampleisN2O4
2NO2.Therateexpressionforthistypeofreactionis
(9-34)Tofindthesolution,weintroduceaprogressvariable,x=[A1]0-[A1](9-35)Equation(9-34)thusbecomes
FirstandsecondorderOr(9-36)Welet(9-37)andSothat(9-38)Then(9-39)Thesolutionofequation(9-39)is(9-40)WhereOr9.1.3ConsecutiveReactionsIrreversiblereactionscanbedefinedasthosewhichstartwithaninitialreactantandproduceproductsorintermediatesgenerallyinonlyonedirection.Consecutivereactionsaresequentialirreversiblereactions.Therearetwoclassesofconsecutivereactions:Thosewhicharefirstorderandthosewhicharemixedfirstorderandsecondorder.
9.1.3ConsecutiveReactionsFirst-orderconsecutivereactions.
.1First-orderwithtwosteps.
Considertheconsecutivefirst-orderreactioninvolvingtwostages:(9-42)Thismechanismcanbedescribedbythefollowingsetofrateexpressions:(9-43)(9-44)(9-45)First-orderconsecutivTheconcentrationofA1isobtainedafterintegrationas
(9-46)TheconcentrationofA2iscomputedfromequation(9-44)(9-47)Solvingthisequation,weobtainthetimedependenceof[A2]:(9-48)If[A2]0=0att=0,then(9-49)TheconcentrationofA1isobtTheconcentrationofA3canbedeterminedfromconservationofmass:[A1]0=[A1]+[A2]+[A3](9-50)Hencewehave(9-51)Simplifyingthisexpressiongives(9-52)
TheconcentrationofA3canbe
.2First-orderwiththreesteps.
Thesystemofdifferentialequationsforafirst-orderconsecutivereactioninvolvingthreesteps,viz.:(9-53)canbeintegratedinawaysimilartothetwo-stepcase.ThedifferentialequationsforA1andA2andtheirsolutionsdonotdifferfromthoseobtainedinthetwo-stepcase,whilethedifferentialequationforA3is(9-54)Substitutingequation(9-49)for[A2]intoequation(9-54)gives(9-55).2First-orderwithtIntegratingthislinearequationsubjecttotheinitialconditionthat[A3]=0att=0,weobtain(9-56)Then(9-57)
Integratingthislinearequati
Higherorderconsecutivereactions.
Somehigherorderconsecutivereactionsmaybefirstorderinonestepandsecondordertheinsecond,suchas(9-58)Orbothstepsmaybesecondorderconsecutivereactions,asin(9-59)Thedifferentialequationsformostofthesesystemsofreactionsarenonlinearandgenerallytheyhavenoexactsolutions.Nevertheless,analyticsolutionsforsuchsystemscanbeobtainediftimeiseliminatedasavariable.Toillustratethismethod,considerthereactionsequencedescribedbythesystemofequations(2-58):Higherorderconsec(9-60)(9-61)(9-62)Tosolvethissystemofequationswedivideequation(9-61)by(9-60)(9-63)IfweletK=k1/k2,then(9-64)
Equation(9-64)canberearrangedto(9-65)(9-66)Integratingequation(9-66)overtherespectivelimits,i.e.,(9-67)gives(9-68)Equation(9-64)canberearran9.1.4ParallelreactionsParallelreactionsaredefinedastwoormoreprocessesinwhichthesamespeciesparticipateineachreactionstep.Themostcommoncasesofparallelreactionsare:(1)thoseinwhichtheinitialreactantdecomposesintoseveraldifferentproducts;(2)thoseinwhichtheinitialreactantsaredifferent,butyieldthesameproducts;and(3)thoseinwhichasubstancereactswithtwoormoreinitialreactants.9.1.4ParallelreactionsParalFirstorderdecaytodifferentproductsConsiderthemechanism(9-69)Att=0theinitialconcentrationsofthefourcomponentsare[A1]=[A1]0;[A2]=[A3]
=[A4]
=0(9-70,71)Thedifferentialequationforthesystemcanbewritten,asexemplifiedfor[A1],(9-72)Integratingequation(9-72)yields(9-73)FirstorderdecaytodTosolvefor[A2]wesubstituteequation(9-73)intoequation(9-74),(9-74)Anduponintegratingweobtain(9-75)Similarlyweobtain(9-76)(9-77)Tosolvefor[A2]wesubstituItfollowsthattherelativerateconstantscanbedeterminedbymeasuringtherelativeproductyields:(9-78)Thisratiodefinesthebranchingratioforthereaction;notethatthisbranchingrationisindependentoftime.Theaboveexamplecanbeeasilygeneralizedtoreactionsofasinglereactantintondifferentproducts.Wethushave(9-79)(9-80)Itfollowsthattherelative
Firstorderdecaytothesameproducts.Considerthereactionsequence
(9-81)TherateexpressionsforthedisappearanceofA1andA3andtheappearanceofA2are(9-82)(9-83)
(9-84)Att=0,[A1]=[A1]0,[A3]=[A3]0,and[A2]=.2FirstorderdecaytoTheequationsdescribingthetimedependenceforeachcomponentare(9-85)(9-86)Since(9-87)Uponintegrationweobtain
(9-88)or(9-89)TheequationsdescribingthetParallelsecond-orderreactionsInthecaseofparallelsecond-orderreactions,(9-90)Twodifferentialequationscanbewritten,(9-91)(9-92)Conservationofmassdemands[A4]=[A2]0-[A2](9-93)[A5]=[A3]0-[A3](9-94)[A1]0-[A1]=[A4]
+[A5]=[A2]0-[A2]+[A3]0-[A3](9-95)Parallelsecond-orderEliminatingtimeasavariable,yields(9-96)whichcanbeintegratedundertheinitialconditionthat[A3]=[A3]0and[A2]=[A2]0attimet=0.Thisgives(9-97)Fromthemassconservationrelationwecandetermine[A5]bysubstitutingequation(9-94)intoequation(9-97).Rearrangingthengives(9-98)EliminatingtimeasavariablTheexpressionfor[A1]isobtainedfromequation(9-95)[A1]=[A1]0-[A2]0-[A3]0+[A2]+[A3](9-99)Substitutingequation(9-96)intoequation(9-99)gives(9-100)Usingthisexpressionfor[A1],weobtainadifferentialequationfor[A2]:(9-101)(9-102)Theexpressionfor[A1]isobIntegrating(9-102),weobtain(9-103)Thereisnoexplicitsolutiontothisintegral,butwecanconsidersomelimitingcases.
CaseI.k1>>k2
Underthisconditiontherationk2/k1isapproximatelyzero,thusequation(9-103)reducestothesimpleform(9-104)(9-105)Integrating(9-102),weobtaiRearrangingandsolvingfor[A2]tyields(9-106)CaseII.k1=k2
Underthisconditiontherationk2/k1
=1,thusequation(9-103)canbeintegrable,viz.(9-107)(9-108)Rearrangingandsolvingfor[Assignments:
Considerthereaction
att=0,[A1]=[A1]0,[A2]=[A3]=…=[An-1]=[An]=0.Deriveanexpressionthatwilldescribetheconcentrationoftheintermediatesexistingatanytimetduringthereaction.[E.Abel,Z.Phys.Chem.A56,558(1906).]Considerthefirst-ordercyclicreaction
Assumethatinitiallyatt=0,[A]=[A]0,[B]=[C]=0,andtheamountsofA,BandCalwaysfollow[A]0=[A]+[B]+[C]Usingthedetailedbalancedmethod,solvefor[A],[B]and[C].Assignments:ConsiderthereacStatisticalThermodynamicsandChemicalKineticsStateKeyLaboratoryforPhysicalChemistryofSolidSurfaces廈門大學(xué)固體表面物理化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室Lecture9May12,2003StatisticalThermodynamicsandChapter9ComplexReactions9.1Exactanalyticsolutionsforcomplexreactions9.1.1IntroductionMostchemicalprocessesarecomplex,i.e.theyconsistofanumberofcoupledelementaryreactions.Thesecomplexreactionscanbedividedintoseveralclasses:(1)opposingorreversiblereactions,(2)consecutivereactions,(3)parallelreactions,and(4)mixedreactions.Inthischapter,weexaminemethodsfordeterminingexactanalyticsolutionsforthetimedependenceofconcentrationsofspeciesinvolvedincomplexreactions.Chapter9ComplexReactionsReversiblereactionsInreversiblereactionsoropposingreactions,theproductsoftheinitialreactioncanproceedtore-formtheoriginalsubstances.Achemicalexampleofthisisthecis-transisomerizationof1,2-dichloroethylene:(9-1)Assuch,thesimplestreversiblereactionisoftheform
(9-2)andisfirstorderineachdirection.Thedifferentialequationforthismechanismis(9-3)(9-4)9.1.2ReversiblereactionsIfitisassumedthatbothA1andA2arepresentinthesystemattimet=0,thatis,[A1]=[A1]0and[A2]=[A2]0,thenatanytimeafterwordsthetotalamountofreactantremainingandnewproductformedmustequaltheinitialamountofthereactantsbeforereactions.Hence,
[A1]0+[A2]0=[A1]+[A2](9-5)Solvingfor[A2],weobtain
[A2]
=[A1]0+[A2]0-[A1](9-6)andsubstitutingthisintoequation(9-3)yields(9-7)IfitisassumedthatbothA1Tofindthesolutionofequation(9-7)weintroduceavariablem,definedas(9-8)Thisallowsustorewriteequation(9-7)as(9-9)whichwemaythenintegrate(9-10)Thesolutionis(9-11)TofindthesolutionofequatIfonly[A1]ispresentinthesysteminitially,att=0,thenthesolutionreducesto(9-12)whichisjust(9-13)Usingthemassconservationconstraint[A1]0=[A1]+[A2],wecanobtainthesolutionfor[A2]:
(9-14)Whenequilibriumisreached,theindividualreactionsmustbebalanced;inotherwords,thereactionABmustoccurjustasfrequentlyasthereversereaction.Theforwardandreversereactionsoccuratthesamerate.Ifonly[A1]ispresentinthConsequently,forreaction(9-2)atequilibrium,(9-15)and(9-16)andwehavethefollowingdefinitionoftheequilibriumconstantKeqexpressedintermsofrateconstants:
(9-17)Thesameargumentcanbeextendedtoareversiblereactionthatoccursinmultiplestages.
Consequently,forreaction(First-orderreversiblereactionsinvolvingtwostepsReversiblereactionsmaybedistinguishedbynumberofstagesandthenumberofinitialreactantsinvolvedinthereaction.Here,weconsiderthecompletederivationforfirstorderreversiblereactionsinvolvingonlytwostages,thatis,(9-18)Thekineticequationsforthesystemare
(9-19)(9-20)(9-21)First-orderreversibleWeassumethatatt=0,[A1]=[A1]0,and[A2]0=[A3]0=0andthattheamountsofA1,A2andA3whichhavereactedatalatertimesatisfytheequation:
[A1]0=[A1]+[A2]+[A3](9-22)Bytheprincipleofdetailedbalance,wehaveand(9-23,24)Usingequations(9-22)-(9-24)gives(9-25)So(9-26)Weassumethatatt=0,[A1]=[ASubstitutingequation(9-26)intoequation(9-19)weobtainthenewfirst-orderdifferentialequaion:
(9-27)Solvingthiseuationusingstandardmethods,wehave(9-28)Substitutingequation(9-22),(9-26)and(9-28)intothisexpression,wehave,uponsimplification,(9-29)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 票務(wù)代理地勤服務(wù)知識(shí)考核試卷
- 碳素材料在智能窗戶中的功能實(shí)現(xiàn)考核試卷
- 出版業(yè)品牌建設(shè)與宣傳推廣考核試卷
- 數(shù)字出版物營(yíng)銷策略與應(yīng)用考核試卷
- 礦產(chǎn)勘查中的勘查成果資料信息化考核試卷
- 油炸食品在快餐行業(yè)中的應(yīng)用與市場(chǎng)競(jìng)爭(zhēng)考核試卷
- 淡水養(yǎng)殖水體富營(yíng)養(yǎng)化風(fēng)險(xiǎn)評(píng)估考核試卷
- 晉中師范高等??茖W(xué)校《Python語(yǔ)言程序設(shè)計(jì)實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆塔城地區(qū)烏蘇市2025年數(shù)學(xué)四年級(jí)第二學(xué)期期末聯(lián)考試題含解析
- 山西醫(yī)科大學(xué)晉祠學(xué)院《大學(xué)生精益創(chuàng)新創(chuàng)業(yè)實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷
- 挖機(jī)轉(zhuǎn)讓合同協(xié)議
- 庫(kù)欣病診治專家共識(shí)要點(diǎn)解讀(2025年)解讀課件
- (四調(diào))武漢市2025屆高中畢業(yè)生四月調(diào)研考試 數(shù)學(xué)試卷(含答案詳解)
- 2024年中國(guó)礦產(chǎn)資源集團(tuán)大數(shù)據(jù)有限公司招聘筆試真題
- 2025年河南機(jī)電職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)及參考答案
- 超越廣告-南京林業(yè)大學(xué)中國(guó)大學(xué)mooc課后章節(jié)答案期末考試題庫(kù)2023年
- 危廢處置方案完全示范版
- 沁園春·疊嶂西馳.中職課件電子教案
- 《第十三章:牙頜面畸形》PPT課件
- 人民醫(yī)院驗(yàn)收管理規(guī)定
- 污水處理廠工程分部、分項(xiàng)、檢驗(yàn)批劃分
評(píng)論
0/150
提交評(píng)論