2023學(xué)年南寧市重點(diǎn)中學(xué)高三第二次模擬考試數(shù)學(xué)試卷(含答案解析)_第1頁
2023學(xué)年南寧市重點(diǎn)中學(xué)高三第二次模擬考試數(shù)學(xué)試卷(含答案解析)_第2頁
2023學(xué)年南寧市重點(diǎn)中學(xué)高三第二次模擬考試數(shù)學(xué)試卷(含答案解析)_第3頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個實(shí)例,若輸入的值為2,則輸出的值為A. B. C. D.2.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.3.已知全集為,集合,則()A. B. C. D.4.將函數(shù)的圖像向右平移個單位長度,再將圖像上各點(diǎn)的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,若為奇函數(shù),則的最小值為()A. B. C. D.5.設(shè)i為虛數(shù)單位,若復(fù)數(shù),則復(fù)數(shù)z等于()A. B. C. D.06.在中,,則()A. B. C. D.7.已知函數(shù),若函數(shù)有三個零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.8.已知的面積是,,,則()A.5 B.或1 C.5或1 D.9.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.10.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.11.如圖,平面與平面相交于,,,點(diǎn),點(diǎn),則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點(diǎn)只能作唯一平面與垂直D.過一定能作一平面與垂直12.設(shè)點(diǎn),,不共線,則“”是“”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個頂點(diǎn)都在球的球面上,,則球的表面積為__________.14.如圖梯形為直角梯形,,圖中陰影部分為曲線與直線圍成的平面圖形,向直角梯形內(nèi)投入一質(zhì)點(diǎn),質(zhì)點(diǎn)落入陰影部分的概率是_____________15.函數(shù)的定義域?yàn)開_____.16.已知在等差數(shù)列中,,,前n項(xiàng)和為,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點(diǎn).(1)求異面直線AP,BM所成角的余弦值;(2)點(diǎn)N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為,求λ的值.18.(12分)某企業(yè)現(xiàn)有A.B兩套設(shè)備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測某一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖1是從A設(shè)備抽取的樣本頻率分布直方圖,表1是從B設(shè)備抽取的樣本頻數(shù)分布表.圖1:A設(shè)備生產(chǎn)的樣本頻率分布直方圖表1:B設(shè)備生產(chǎn)的樣本頻數(shù)分布表質(zhì)量指標(biāo)值頻數(shù)2184814162(1)請估計(jì)A.B設(shè)備生產(chǎn)的產(chǎn)品質(zhì)量指標(biāo)的平均值;(2)企業(yè)將不合格品全部銷毀后,并對合格品進(jìn)行等級細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件利潤240元;質(zhì)量指標(biāo)值落在或內(nèi)的定為二等品,每件利潤180元;其它的合格品定為三等品,每件利潤120元.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設(shè)備生產(chǎn)的同一種產(chǎn)品每件獲得利潤的期望值調(diào)整生產(chǎn)規(guī)模,請根據(jù)以上數(shù)據(jù),從經(jīng)濟(jì)效益的角度考慮企業(yè)應(yīng)該對哪一套設(shè)備加大生產(chǎn)規(guī)模?19.(12分)已知中,角,,的對邊分別為,,,已知向量,且.(1)求角的大??;(2)若的面積為,,求.20.(12分)如圖,三棱臺中,側(cè)面與側(cè)面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.21.(12分)已知函數(shù),.(1)當(dāng)時(shí),求不等式的解集;(2)若函數(shù)的圖象與軸恰好圍成一個直角三角形,求的值.22.(10分)已知拋物線的準(zhǔn)線過橢圓C:(a>b>0)的左焦點(diǎn)F,且點(diǎn)F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)F做直線與橢圓C交于A,B兩點(diǎn),P是AB的中點(diǎn),線段AB的中垂線交直線l于點(diǎn)Q.若,求直線AB的方程.

2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【答案解析】

由題意,模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的,的值,當(dāng)時(shí),不滿足條件,跳出循環(huán),輸出的值.【題目詳解】解:初始值,,程序運(yùn)行過程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環(huán),輸出的值為其中①②①—②得.故選:.【答案點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到,的值是解題的關(guān)鍵,屬于基礎(chǔ)題.2.A【答案解析】

令,進(jìn)而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【題目詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【答案點(diǎn)睛】本題主要考查了導(dǎo)數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學(xué)思想,恰當(dāng)?shù)挠靡粋€未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.3.D【答案解析】

對于集合,求得函數(shù)的定義域,再求得補(bǔ)集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【題目詳解】,,.故選:D【答案點(diǎn)睛】本題考查集合的補(bǔ)集、交集運(yùn)算,考查具體函數(shù)的定義域,考查解一元二次不等式.4.C【答案解析】

根據(jù)三角函數(shù)的變換規(guī)則表示出,根據(jù)是奇函數(shù),可得的取值,再求其最小值.【題目詳解】解:由題意知,將函數(shù)的圖像向右平移個單位長度,得,再將圖像上各點(diǎn)的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,,因?yàn)槭瞧婧瘮?shù),所以,解得,因?yàn)椋缘淖钚≈禐?故選:【答案點(diǎn)睛】本題考查三角函數(shù)的變換以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.5.B【答案解析】

根據(jù)復(fù)數(shù)除法的運(yùn)算法則,即可求解.【題目詳解】.故選:B.【答案點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)運(yùn)算,屬于基礎(chǔ)題.6.A【答案解析】

先根據(jù)得到為的重心,從而,故可得,利用可得,故可計(jì)算的值.【題目詳解】因?yàn)樗詾榈闹匦模?所以,所以,因?yàn)椋?,故選A.【答案點(diǎn)睛】對于,一般地,如果為的重心,那么,反之,如果為平面上一點(diǎn),且滿足,那么為的重心.7.B【答案解析】

根據(jù)所給函數(shù)解析式,畫出函數(shù)圖像.結(jié)合圖像,分段討論函數(shù)的零點(diǎn)情況:易知為的一個零點(diǎn);對于當(dāng)時(shí),由代入解析式解方程可求得零點(diǎn),結(jié)合即可求得的范圍;對于當(dāng)時(shí),結(jié)合導(dǎo)函數(shù),結(jié)合導(dǎo)數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【題目詳解】根據(jù)題意,畫出函數(shù)圖像如下圖所示:函數(shù)的零點(diǎn),即.由圖像可知,,所以是的一個零點(diǎn),當(dāng)時(shí),,若,則,即,所以,解得;當(dāng)時(shí),,則,且若在時(shí)有一個零點(diǎn),則,綜上可得,故選:B.【答案點(diǎn)睛】本題考查了函數(shù)圖像的畫法,函數(shù)零點(diǎn)定義及應(yīng)用,根據(jù)零點(diǎn)個數(shù)求參數(shù)的取值范圍,導(dǎo)數(shù)的幾何意義應(yīng)用,屬于中檔題.8.B【答案解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.9.A【答案解析】

根據(jù)復(fù)數(shù)的乘法運(yùn)算法則化簡可得,根據(jù)純虛數(shù)的概念可得結(jié)果.【題目詳解】由題可知原式為,該復(fù)數(shù)為純虛數(shù),所以.故選:A【答案點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算和復(fù)數(shù)的分類,屬基礎(chǔ)題.10.A【答案解析】

首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關(guān)系求出所成角的正弦值.【題目詳解】由題知是等腰直角三角形且,是等邊三角形,設(shè)中點(diǎn)為,連接,,可知,,同時(shí)易知,,所以面,故即為與面所成角,有,故.故選:A.【答案點(diǎn)睛】本題主要考查了空間幾何題中線面夾角的計(jì)算,屬于基礎(chǔ)題.11.D【答案解析】

根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對選項(xiàng)中的命題判斷.【題目詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過只有唯一平面與平行,故正確.C.根據(jù)過一點(diǎn)有且只有一個平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過不一定能作一平面與垂直,故錯誤.故選:D【答案點(diǎn)睛】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.12.C【答案解析】

利用向量垂直的表示、向量數(shù)量積的運(yùn)算,結(jié)合充分必要條件的定義判斷即可.【題目詳解】由于點(diǎn),,不共線,則“”;故“”是“”的充分必要條件.故選:C.【答案點(diǎn)睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

如圖所示,將三棱錐補(bǔ)成長方體,球?yàn)殚L方體的外接球,長、寬、高分別為,計(jì)算得到,得到答案.【題目詳解】如圖所示,將三棱錐補(bǔ)成長方體,球?yàn)殚L方體的外接球,長、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【答案點(diǎn)睛】本題考查了三棱錐的外接球問題,意在考查學(xué)生的計(jì)算能力和空間想象能力,將三棱錐補(bǔ)成長方體是解題的關(guān)鍵.14.【答案解析】

聯(lián)立直線與拋物線方程求出交點(diǎn)坐標(biāo),再利用定積分求出陰影部分的面積,利用梯形的面積公式求出,最后根據(jù)幾何概型的概率公式計(jì)算可得;【題目詳解】解:聯(lián)立解得或,即,,,,,故答案為:【答案點(diǎn)睛】本題考查幾何概型的概率公式的應(yīng)用以及利用微積分基本定理求曲邊形的面積,屬于中檔題.15.【答案解析】

對數(shù)函數(shù)的定義域需滿足真數(shù)大于0,再由指數(shù)型不等式求解出解集即可.【題目詳解】對函數(shù)有意義,即.故答案為:【答案點(diǎn)睛】本題考查求對數(shù)函數(shù)的定義域,還考查了指數(shù)型不等式求解,屬于基礎(chǔ)題.16.39【答案解析】

設(shè)等差數(shù)列公差為d,首項(xiàng)為,再利用基本量法列式求解公差與首項(xiàng),進(jìn)而求得即可.【題目詳解】設(shè)等差數(shù)列公差為d,首項(xiàng)為,根據(jù)題意可得,解得,所以.故答案為:39【答案點(diǎn)睛】本題考查等差數(shù)列的基本量計(jì)算以及前n項(xiàng)和的公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1).(2)1【答案解析】

(1)先根據(jù)題意建立空間直角坐標(biāo)系,求得向量和向量的坐標(biāo),再利用線線角的向量方法求解.(2,由AN=λ,設(shè)N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),再求得平面PBC的一個法向量,利用直線MN與平面PBC所成角的正弦值為,由|cos〈,〉|===求解.【題目詳解】(1)因?yàn)镻A⊥平面ABCD,且AB,AD?平面ABCD,所以PA⊥AB,PA⊥AD.又因?yàn)椤螧AD=90°,所以PA,AB,AD兩兩互相垂直.分別以AB,AD,AP為x,y,z軸建立空間直角坐標(biāo)系,則由AD=2AB=2BC=4,PA=4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).又因?yàn)镸為PC的中點(diǎn),所以M(1,1,2).所以=(-1,1,2),=(0,0,4),所以cos〈,〉===,所以異面直線AP,BM所成角的余弦值為.(2)因?yàn)锳N=λ,所以N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),=(0,2,0),=(2,0,-4).設(shè)平面PBC的法向量為=(x,y,z),則即令x=2,解得y=0,z=1,所以=(2,0,1)是平面PBC的一個法向量.因?yàn)橹本€MN與平面PBC所成角的正弦值為,所以|cos〈,〉|===,解得λ=1∈[0,4],所以λ的值為1.【答案點(diǎn)睛】本題主要考查了空間向量法研究空間中線線角,線面角的求法及應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.18.(1)30.2,29;(2)B設(shè)備【答案解析】

(1)平均數(shù)的估計(jì)值為組中值與頻率乘積的和;(2)要注意指標(biāo)值落在內(nèi)的產(chǎn)品才視為合格品,列出A、B設(shè)備利潤分布列,算出期望即可作出決策.【題目詳解】(1)A設(shè)備生產(chǎn)的樣本的頻數(shù)分布表如下質(zhì)量指標(biāo)值頻數(shù)41640121810.根據(jù)樣本質(zhì)量指標(biāo)平均值估計(jì)A設(shè)備生產(chǎn)一件產(chǎn)品質(zhì)量指標(biāo)平均值為30.2.B設(shè)備生產(chǎn)的樣本的頻數(shù)分布表如下質(zhì)量指標(biāo)值頻數(shù)2184814162根據(jù)樣本質(zhì)量指標(biāo)平均值估計(jì)B設(shè)備生產(chǎn)一件產(chǎn)品質(zhì)量指標(biāo)平均值為29.(2)A設(shè)備生產(chǎn)一件產(chǎn)品的利潤記為X,B設(shè)備生產(chǎn)一件產(chǎn)品的利潤記為Y,X240180120PY240180120P若以生產(chǎn)一件產(chǎn)品的利潤作為決策依據(jù),企業(yè)應(yīng)加大B設(shè)備的生產(chǎn)規(guī)模.【答案點(diǎn)睛】本題考查平均數(shù)的估計(jì)值、離散隨機(jī)變量的期望,并利用期望作決策,是一個概率與統(tǒng)計(jì)綜合題,本題是一道中檔題.19.(1);(2).【答案解析】試題分析:(1)利用已知及平面向量數(shù)量積運(yùn)算可得,利用正弦定理可得,結(jié)合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.20.(Ⅰ)見解析;(Ⅱ).【答案解析】試題分析:(Ⅰ)連接,由比例可得∥,進(jìn)而得線面平行;(Ⅱ)過點(diǎn)作的垂線,建立空間直角坐標(biāo)系,不妨設(shè),則求得平面的法向量為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論