福建省泉州市南安國光中學2023屆數(shù)學高一上期末學業(yè)質量監(jiān)測試題含解析_第1頁
福建省泉州市南安國光中學2023屆數(shù)學高一上期末學業(yè)質量監(jiān)測試題含解析_第2頁
福建省泉州市南安國光中學2023屆數(shù)學高一上期末學業(yè)質量監(jiān)測試題含解析_第3頁
福建省泉州市南安國光中學2023屆數(shù)學高一上期末學業(yè)質量監(jiān)測試題含解析_第4頁
福建省泉州市南安國光中學2023屆數(shù)學高一上期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

17/182022-2023學年高一上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.“函數(shù)在區(qū)間I上嚴格單調”是“函數(shù)在I上有反函數(shù)”的()A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既非充分又非必要條件2.已知唯一的零點在區(qū)間、、內(nèi),那么下面命題錯誤的A.函數(shù)在或,內(nèi)有零點B.函數(shù)在內(nèi)無零點C.函數(shù)在內(nèi)有零點D.函數(shù)在內(nèi)不一定有零點3.設函數(shù),其中,,,都是非零常數(shù),且滿足,則()A. B.C. D.4.《九章算術》中“方田”章給出了計算弧田面積時所用的經(jīng)驗公式,即弧田面積=×(弦×矢+矢).弧田(如圖1)由圓弧和其所對弦圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.現(xiàn)有圓心角為,半徑為2米的弧田(如圖2),則這個弧田面積大約是()平方米.(,結果保留整數(shù))A.2 B.3C.4 D.55.下列四個集合中,是空集的是()A. B.C. D.6.函數(shù)部分圖像如圖所示,則的值為()A. B.C. D.7.函數(shù)的一條對稱軸是()A. B.C. D.8.若,,則()A. B.C. D.9.已知方程,在區(qū)間(-2,0)上的解可用二分法求出,則的取值范圍是A.(-4,0) B.(0,4)C.[-4,0] D.[0,4]10.若條件p:,q:,則p是q成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既非充分也非必要條件二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.已知函數(shù)是偶函數(shù),則實數(shù)的值是__________12.函數(shù)的定義域為_____________.13.一個幾何體的三視圖如圖所示,則該幾何體的體積為__________.14.設奇函數(shù)在上是增函數(shù),且,若對所有的及任意的都滿足,則的取值范圍是__________15.函數(shù),則__________.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.已知函數(shù)(1)求函數(shù)的單調區(qū)間;(2)求函數(shù)圖象的對稱中心的坐標和對稱軸方程17.筒車是我國古代發(fā)明的一種水利灌溉工具,因其經(jīng)濟又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到應用.假定在水流穩(wěn)定的情況下,簡車上的每一個盛水筒都做勻速圓周運動.如圖,將簡車抽象為一個幾何圖形(圓),筒車半徑為4,筒車轉輪的中心O到水面的距離為2,筒車每分鐘沿逆時針方向轉動4圈.規(guī)定:盛水筒M對應的點P從水中浮現(xiàn)(即P0時的位置)時開始計算時間,且以水輪的圓心O為坐標原點,過點O的水平直線為x軸建立平面直角坐標系.設盛水筒M從點P0運動到點P時所經(jīng)過的時間為t(單位:),且此時點P距離水面的高度為h(單位:)(在水面下則h為負數(shù)).(1)求點P距離水面的高度為h關于時間為t的函數(shù)解析式;(2)求點P第一次到達最高點需要的時間(單位:).18.已知圓與直線相切,圓心在直線上,且直線被圓截得的弦長為.(1)求圓的方程,并判斷圓與圓的位置關系;(2)若橫截距為-1且不與坐標軸垂直的直線與圓交于兩點,在軸上是否存在定點,使得,若存在,求出點坐標,若不存在,說明理由.19.年新冠肺炎仍在世界好多國家肆虐,并且出現(xiàn)了傳染性更強的“德爾塔”變異毒株、拉姆達”變異毒株,盡管我國抗疫取得了很大的成績,疫情也得到了很好的遏制,但由于整個國際環(huán)境的影響,時而也會出現(xiàn)一些散發(fā)病例,故而抗疫形勢依然艱巨,日常防護依然不能有絲毫放松.在日常防護中,口罩是必不可少的防護用品.已知某口罩的固定成本為萬元,每生產(chǎn)萬箱,需另投入成本萬元,為年產(chǎn)量單位:萬箱;已知通過市場分析,如若每萬箱售價萬元時,該廠年內(nèi)生產(chǎn)的商品能全部售完.利潤銷售收入總成本(1)求年利潤與萬元關于年產(chǎn)量萬箱的函數(shù)關系式;(2)求年產(chǎn)量為多少萬箱時,該口罩生產(chǎn)廠家所獲得年利潤最大20.如圖,三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求與平面所成角的大小.21.(附加題,本小題滿分10分,該題計入總分)已知函數(shù),若在區(qū)間內(nèi)有且僅有一個,使得成立,則稱函數(shù)具有性質(1)若,判斷是否具有性質,說明理由;(2)若函數(shù)具有性質,試求實數(shù)的取值范圍

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、A【解析】“函數(shù)在區(qū)間上單調”“函數(shù)在上有反函數(shù)”,反之不成立.即可判斷出結論【詳解】解:“函數(shù)在區(qū)間上嚴格單調”“函數(shù)在上有反函數(shù)”,下面給出證明:若“函數(shù)在區(qū)間上嚴格單調”,設函數(shù)在區(qū)間上的值域為,任取,如果在中存在兩個或多于兩個的值與之對應,設其中的某兩個為,且,即,但因為,所以(或)由函數(shù)在區(qū)間上單調知:,(或),這與矛盾.因此在中有唯一的值與之對應.由反函數(shù)的定義知:函數(shù)在區(qū)間上存在反函數(shù)反之“函數(shù)在上有反函數(shù)”則不一定有“函數(shù)在區(qū)間上單調”,例如:函數(shù),就存在反函數(shù):易知函數(shù)在區(qū)間上并不單調綜上,“函數(shù)在區(qū)間上嚴格單調”是“函數(shù)在上有反函數(shù)”的充分不必要條件.故選:A2、C【解析】利用零點所在的區(qū)間之間的關系,將唯一的零點所在的區(qū)間確定出,則其他區(qū)間就不會存在零點,進行選項的正誤篩選【詳解】解:由題意,唯一的零點在區(qū)間、、內(nèi),可知該函數(shù)的唯一零點在區(qū)間內(nèi),在其他區(qū)間不會存在零點.故、選項正確,函數(shù)的零點可能在區(qū)間內(nèi),也可能在內(nèi),故項不一定正確,函數(shù)的零點可能在區(qū)間內(nèi),也可能在內(nèi),故函數(shù)在內(nèi)不一定有零點,項正確故選:【點睛】本題考查函數(shù)零點的概念,考查函數(shù)零點的確定區(qū)間,考查命題正誤的判定.注意到命題說法的等價說法在判斷中的作用3、C【解析】代入后根據(jù)誘導公式即可求出答案【詳解】解:由題,∴,∴,故選:C【點睛】本題主要考查三角函數(shù)的誘導公式的應用,屬于基礎題4、A【解析】先由已知條件求出,然后利用公式求解即可【詳解】因為,所以,在中,,所以,所以,所以這個弧田面積為,故選:A5、D【解析】對每個集合進行逐一檢驗,研究集合內(nèi)的元素是否存在即可選出.【詳解】選項A,;選項B,;選項C,;選項D,,方程無解,.選:D.6、C【解析】根據(jù)的最值得出,根據(jù)周期得出,利用特殊點計算,從而得出的解析式,再計算.【詳解】由函數(shù)的最小值可知:,函數(shù)的周期:,則,當時,,據(jù)此可得:,令可得:,則函數(shù)的解析式為:,.故選:C.【點睛】本題考查了三角函數(shù)的圖象與性質,屬于中檔題.7、B【解析】由余弦函數(shù)的對稱軸為,應用整體代入法求得對稱軸為,即可判斷各項的對稱軸方程是否正確.【詳解】由余弦函數(shù)性質,有,即,∴當時,有.故選:B8、C【解析】由題可得,從而可求出,即得.【詳解】∵所以,又因為,,所以,即,所以,又因為,所以,故選:C9、B【解析】根據(jù)零點存在性定理,可得,求解即可.【詳解】因為方程在區(qū)間(-2,0)上的解可用二分法求出,所以有,解得.故選B【點睛】本題主要考查零點的存在性定理,熟記定理即可,屬于基礎題型.10、B【解析】由條件推結論可判斷充分性,由結論推條件可判斷必要性【詳解】由不能推出,例如,但必有,所以p是q成立的必要不充分條件.故選:B.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、1【解析】函數(shù)是偶函數(shù),,即,解得,故答案為.【方法點睛】本題主要考查函數(shù)的奇偶性,屬于中檔題.已知函數(shù)的奇偶性求參數(shù),主要方法有兩個,一是利用:(1)奇函數(shù)由恒成立求解,(2)偶函數(shù)由恒成立求解;二是利用特殊值:奇函數(shù)一般由求解,偶函數(shù)一般由求解,用特殊法求解參數(shù)后,一定要注意驗證奇偶性12、【解析】根據(jù)偶次根式和分式有意義的要求可得不等式組,解不等式組可求得結果.【詳解】由題意得:,解得:且,即的定義域為.故答案為:.13、【解析】該幾何體是一個半圓柱,如圖,其體積為.考點:幾何體的體積.14、【解析】由題意得,又因為在上是增函數(shù),所以當,任意的時,,轉化為在時恒成立,即在時恒成立,即可求解.【詳解】由題意,得,又因為在上是增函數(shù),所以當時,有,所以在時恒成立,即在時恒成立,轉化為在時恒成立,所以或或解得:或或,即實數(shù)的取值范圍是【點睛】本題考查函數(shù)的恒成立問題的求解,求解的關鍵是把不等式的恒成立問題進行等價轉化,考查分析問題和解答問題的能力,屬于中檔試題.15、【解析】先求的值,再求的值.【詳解】由題得,所以.故答案為【點睛】本題主要考查指數(shù)對數(shù)運算和分段函數(shù)求值,意在考查學生對這些知識的理解掌握水平,屬于基礎題.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)增區(qū)間為,減區(qū)間為(2)對稱中心的坐標為;對稱軸方程為【解析】(1)將函數(shù)轉化為,利用正弦函數(shù)的單調性求解;(2)利用正弦函數(shù)的對稱性求解;【小問1詳解】解:由.令,解得,令,解得,故函數(shù)的增區(qū)間為,減區(qū)間為;【小問2詳解】令,解得,可得函數(shù)圖象的對稱中心的坐標為,令,解得,可得函數(shù)圖象的對稱軸方程為17、(1),(t≥0)(2)【解析】(1)根據(jù)題意,建立函數(shù)關系式;(2)直接解方程即可求解.【小問1詳解】盛水筒M從點P0運動到點P時所經(jīng)過的時間為t,則以Ox為始邊,OP為終邊的角為,故P點的縱坐標為,則點離水面的高度,(t≥0).【小問2詳解】令,得,得,,得,,因為點P第一次到達最高點,所以,所以.18、(1)相交(2)【解析】(1)根據(jù)條件求得圓心和半徑,從而由圓心距確定兩圓的位置關系;(2)設,與圓聯(lián)立得,用坐標表示斜率結合韋達定理求解即可.試題解析:(1)設圓心為,則,(2)聯(lián)立,,(2)法二:聯(lián)立假設存在則,故存在)滿足條件.19、(1)(2)萬箱【解析】(1)分,兩種情況,結合利潤銷售收入總成本公式,即可求解(2)根據(jù)已知條件,結合二次函數(shù)的性質,以及基本不等式,分類討論求得最大值后比較可得【小問1詳解】當時,,當時,,故關于的函數(shù)解析式為小問2詳解】當時,,故當時,取得最大值,當時,,當且僅當,即時,取得最大值,綜上所述,當時,取得最大值,故年產(chǎn)量為萬箱時,該口罩生產(chǎn)廠家所獲得年利潤最大20、(1)證明見解析(2)【解析】(1)連結與交于點,連結,由中位線定理可得,再根據(jù)線面平行的判定定理即可證明結果;(2)方法一:根據(jù)線面垂直的判定定理,可證明平面;取的中點,易證平面,所以即所求角,再根據(jù)直棱柱的有關性質求即可得到結果;方法二:根據(jù)線面垂直的判定定理,可證明平面;取的中點,易證平面;所以即與平面所成的角,再根據(jù)直棱柱的有關性質求即可得到結果.【小問1詳解】證明:如圖一,連結與交于點,連結.在中,、為中點,∴.又平面,平面,∴平面.圖一【小問2詳解】證明:(方法一)如圖二,圖二∵,為的中點,∴.又,,∴平面.取的中點,又為的中點,∴、、平行且相等,∴四邊形是平行四邊形,∴與平行且相等.又平面,∴平面,∴即所求角.由前面證明知平面,∴,又,,∴平面,∴此三棱柱為直棱柱.設∴,,,.(方法二)如圖三,圖三∵,為的中點,∴.又,,∴平面.取的中點,則,∴平面.∴即與平面所成的角.由前面證明知平面,∴,又,,∴平面,∴此三棱柱為直棱柱.設,∴,,∴.21、(Ⅰ)具有性質;(Ⅱ)或或【解析】(Ⅰ)具有性質.若存在,使得,解方程求出方程的根,即可證得;(Ⅱ)依題意,若函數(shù)具有性質,即方程在上有且只有一個實根.設,即在上有且只有一個零點.討論的取值范圍,結合零點存在定理,即可得到的范圍試題解析:(Ⅰ)具有性質依題意,若存在,使,則時有,即,,.由于,所以.又因為區(qū)間內(nèi)有且僅有一個,使成立,所以具有性質5分(Ⅱ)依題意,若函數(shù)具有性質,即方程在上有且只有一個實根設,即在上有且只有一個零點解法一:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論