評價大聯(lián)考2023屆高一上數(shù)學期末考試模擬試題含解析_第1頁
評價大聯(lián)考2023屆高一上數(shù)學期末考試模擬試題含解析_第2頁
評價大聯(lián)考2023屆高一上數(shù)學期末考試模擬試題含解析_第3頁
評價大聯(lián)考2023屆高一上數(shù)學期末考試模擬試題含解析_第4頁
評價大聯(lián)考2023屆高一上數(shù)學期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.電影《長津湖》中,炮兵雷公犧牲的一幕看哭全網(wǎng),他的原型是濟南英雄孔慶三.因為前沿觀察所距敵方陣地較遠,需要派出偵察兵利用觀測儀器標定目標,再經(jīng)過測量和計算指揮火炮實施射擊.為了提高測量和計算的精度,軍事上通常使用密位制來度量角度,將一個圓周分為6000等份,每一等份的弧所對的圓心角叫做1密位.已知我方迫擊炮連在占領陣地后,測得敵人兩地堡之間的距離是54米,兩地堡到我方迫擊炮陣地的距離均是1800米,則我炮兵戰(zhàn)士在摧毀敵方一個地堡后,為了快速準確地摧毀敵方另一個地堡,需要立即將迫擊炮轉動的角度()注:(?。┊斏刃蔚膱A心角小于200密位時,扇形的弦長和弧長近似相等;(ⅱ)取等于3進行計算A.30密位 B.60密位C.90密位 D.180密位2.若不計空氣阻力,則豎直上拋的物體距離拋出點的高度h(單位:)與時間t(單位:)滿足關系式(取,為上拋物體的初始速度).一同學在體育課上練習排球墊球,某次墊球,排球離開手臂豎直上拋的瞬時速度,則在不計空氣阻力的情況下,排球在墊出點2m以上的位置大約停留()A.1 B.1.5C.1.8 D.2.23.直線經(jīng)過第一、二、四象限,則a、b、c應滿足()A. B.C. D.4.若點關于直線的對稱點是,則直線在軸上的截距是A.1 B.2C.3 D.45.已知,為銳角,,,則的值為()A. B.C. D.6.已知函數(shù)的部分圖象如圖所示,則函數(shù)圖象的一個對稱中心可能為()A. B.C. D.7.已知,,則()A. B.C. D.8.“”是“為第二象限角”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知與分別是函數(shù)與的零點,則的值為A. B.C.4 D.510.已知兩直線,.若,則的值為A.0 B.0或4C.-1或 D.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.若是兩個相交平面,則在下列命題中,真命題的序號為________.(寫出所有真命題的序號)①若直線,則在平面內,一定不存在與直線平行的直線②若直線,則在平面內,一定存在無數(shù)條直線與直線垂直③若直線,則在平面內,不一定存在與直線垂直的直線④若直線,則在平面內,一定存在與直線垂直的直線12.某種候鳥每年都要隨季節(jié)的變化而進行大規(guī)模的遷徙,研究候鳥的專家發(fā)現(xiàn),該種鳥類的飛行速度(單位:m/s)與其耗氧量之間的關系為(其中、是實數(shù)).據(jù)統(tǒng)計,該種鳥類在耗氧量為80個單位時,其飛行速度為18m/s,則________;若這種候鳥飛行的速度不能低于60m/s,其耗氧量至少要________個單位.13.已知扇形的圓心角為,面積為,則該扇形的弧長為___________.14.求值:______.15.已知角的終邊經(jīng)過點,且,則t的值為______三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.已知函數(shù).(1)若函數(shù)的定義域為,求集合;(2)若集合,求.17.已知函數(shù),.(1)運用五點作圖法在所給坐標系內作出在內的圖像(畫在答題卡上);(2)求函數(shù)的對稱軸,對稱中心和單調遞增區(qū)間.18.如圖,為等邊三角形,平面,,,為的中點.(Ⅰ)求證:平面;(Ⅱ)求證:平面平面.19.已知函數(shù)最小正周期為.(1)求的值:(2)將函數(shù)的圖象先向左平移個單位,然后向上平移1個單位,得到函數(shù),若在上至少含有4個零點,求b的最小值.20.已知向量,.(1)若與共線且方向相反,求向量的坐標.(2)若與垂直,求向量,夾角的大小.21.已知函數(shù).(1)求的周期和單調區(qū)間;(2)若,,求的值.

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、A【解析】求出1密位對應的弧度,進而求出轉過的密位.【詳解】有題意得:1密位=,因為圓心角小于200密位,扇形的弦長和弧長近似相等,所以,因為,所以迫擊炮轉動的角度為30密位.故選:A2、D【解析】將,代入,得出時間t,再求間隔時間即可.【詳解】解:將,代入,得,解得,所以排球在墊出點2m以上的位置大約停留.故選:D3、A【解析】根據(jù)直線經(jīng)過第一、二、四象限判斷出即可得到結論.【詳解】由題意可知直線的斜率存在,方程可變形為,∵直線經(jīng)過第一、二、四象限,∴,∴且故選:A.4、D【解析】∵點A(1,1)關于直線y=kx+b的對稱點是B(﹣3,3),由中點坐標公式得AB的中點坐標為,代入y=kx+b得①直線AB得斜率為,則k=2.代入①得,.∴直線y=kx+b為,解得:y=4.∴直線y=kx+b在y軸上的截距是4.故選D.5、A【解析】,根據(jù)正弦的差角公式展開計算即可.【詳解】∵,,∴,又∵,∴,又,∴,∴,,∴故選:A.6、C【解析】先根據(jù)圖象求出,得到的解析式,再根據(jù)整體代換法求出其對稱中心,賦值即可得出答案【詳解】由圖可知,,,∴,∴當時,,即令,解得當時,可得函數(shù)圖象的一個對稱中心為故選:C.【點睛】本題主要通過已知三角函數(shù)的圖像求解析式考查三角函數(shù)的性質,屬于中檔題.利用利用圖象先求出周期,用周期公式求出,利用特殊點求出,正確求是解題的關鍵.求解析式時,求參數(shù)是確定函數(shù)解析式的關鍵,由特殊點求時,一定要分清特殊點是“五點法”的第幾個點,用五點法求值時,往往以尋找“五點法”中的第一個點為突破口,“第一點”(即圖象上升時與軸的交點)時;“第二點”(即圖象的“峰點”)時;“第三點”(即圖象下降時與軸的交點)時;“第四點”(即圖象的“谷點”)時;“第五點”時.7、C【解析】求出集合,,直接進行交集運算即可.【詳解】,,故選:C【點睛】本題考查集合的交集運算,指數(shù)函數(shù)的值域,屬于基礎題.8、B【解析】利用輔助角公式及正弦函數(shù)的性質解三角形不等式,再根據(jù)集合的包含關系判斷充分條件、必要條件即可;【詳解】解:由,即,所以,,解得,,即,又第二象限角為,因為真包含于,所以“”是“為第二象限角”的必要不充分條件;故選:B9、D【解析】設,,由,互為反函數(shù),其圖象關于直線對稱,作直線,分別交,的圖象為A,B兩點,點為A,B的中點,聯(lián)立方程得,由中點坐標公式得:,又,故得解【詳解】解:由,化簡得,設,,由,互為反函數(shù),其圖象關于直線對稱,作直線,分別交,的圖象為A,B兩點,點為A,B的中點,聯(lián)立得;,由中點坐標公式得:,所以,故選D【點睛】本題考查了反函數(shù)、中點坐標公式及函數(shù)的零點等知識,屬于難題.10、B【解析】分兩種情況:一、斜率不存在,即此時滿足題意;二、斜率存在即,此時兩斜率分別為,,因為兩直線平行,所以,解得或(舍),故選B考點:由兩直線斜率判斷兩直線平行二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、②④【解析】①當時,在平面內存在與直線平行的直線.②若直線,則平面的交線必與直線垂直,而在平面內與平面的交線平行的直線有無數(shù)條,因此在平面內,一定存在無數(shù)條直線與直線垂直.③當直線為平面的交線時,在平面內一定存在與直線垂直的直線.④當直線為平面的交線,或與交線平行,或垂直于平面時,顯然在平面內一定存在與直線垂直的直線.當直線為平面斜線時,過直線上一點作直線垂直平面,設直線在平面上射影為,則平面內作直線垂直于,則必有直線垂直于直線,因此在平面內,一定存在與直線垂直的直線考點:直線與平面平行與垂直關系12、①.6②.10240【解析】由初始值解出的值,然后令,可得出的取值范圍,由此得出候鳥在飛行時速度不低于時的最低耗氧量.【詳解】由題意,知,解得,所以,要使飛行速度不能低于,則有,即,即,解得,即,所以耗氧量至少要個單位.故答案為:6;10240【點睛】本題考查對數(shù)的應用,解題的關鍵就是要利用題中數(shù)據(jù)解出函數(shù)解析式,利用題意列出不等式進行求解.13、【解析】由扇形的圓心角與面積求得半徑再利用弧長公式即可求弧長.【詳解】設扇形的半徑為r,由扇形的面積公式得:,解得,該扇形的弧長為.故答案為:.14、7【解析】利用指數(shù)式與對數(shù)式的互化,對數(shù)運算法則計算作答.【詳解】.故答案為:715、##0.5625【解析】根據(jù)誘導公式得sinα=-,再由任意角三角函數(shù)定義列方程求解即可.【詳解】因為,所以sinα=-.又角α的終邊過點P(3,-4t),故sinα==-,故,且解得t=(或舍)故答案為:.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1);(2).【解析】⑴滿足函數(shù)有意義的條件為,求出結果即可;⑵根據(jù)已知條件及并集的運算法則可得結果;解析:(1)要使函數(shù)有意義,則要,得.所以.(2)∵,∴17、(1)詳見解析(2)函數(shù)的對稱軸為;對稱中心為;單調遞增區(qū)間為:【解析】(1)五點法作圖;(2)整體代入求對稱軸,對稱中心,單調遞增區(qū)間.【小問1詳解】列表:0010-10020-20描點畫圖:【小問2詳解】求對稱軸:,故函數(shù)的對稱軸為求對稱中心:,故函數(shù)的對稱中心為求單調遞增區(qū)間:,故函數(shù)的單調遞增區(qū)間為:18、(1)見解析(2)見解析【解析】(Ⅰ)取的中點,連結,由三角形中位線定理可得,,結合已知,可得四邊形為平行四邊形,得到,由線面平行的判定可得平面;(Ⅱ)由線面垂直的性質可得平面,得到,再由為等邊三角形,得,結合線面垂直的判定可得平面,再由面面垂直的判定可得面面【詳解】(Ⅰ)證明:取的中點,連結∵在中,,∵,∴,∴四邊形為平行四邊形∴又∵平面∴平面(Ⅱ)證:∵面,平面,∴,又∵為等邊三角形,∴,又∵,∴平面,又∵,∴面,又∵面,∴面面19、(1)1(2)【解析】(1)利用平方關系、二倍角余弦公式、輔助角公式化簡函數(shù)解析式,然后根據(jù)周期公式即可求解;(2)利用三角函數(shù)的圖象變換求出的解析式,然后借助三角函數(shù)的圖象即可求解.【小問1詳解】解:,因為函數(shù)的最小正周期為,即,所以;【小問2詳解】解:由(1)知,由題意,函數(shù),令,即,因為在上至少含有4個零點,所以,即,所以的最小值為.20、(1);(2).【解析】(1)由已知設,.再由向量的模的表示可求得答案;(2)根據(jù)向量垂直的坐標表示可求得,再由向量的夾角運算求得答案..,.【詳解】(1),且與共線且方向相反.設,.,,..(2)與垂直,,,,.,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論