![重慶市綦江區(qū)南州中學(xué)2023年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷(含答案解析)_第1頁](http://file4.renrendoc.com/view/6329086363aa790127f3d200258dff87/6329086363aa790127f3d200258dff871.gif)
![重慶市綦江區(qū)南州中學(xué)2023年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷(含答案解析)_第2頁](http://file4.renrendoc.com/view/6329086363aa790127f3d200258dff87/6329086363aa790127f3d200258dff872.gif)
![重慶市綦江區(qū)南州中學(xué)2023年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷(含答案解析)_第3頁](http://file4.renrendoc.com/view/6329086363aa790127f3d200258dff87/6329086363aa790127f3d200258dff873.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若的內(nèi)角滿足,則的值為()A. B. C. D.2.如下的程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.153.在的展開式中,的系數(shù)為()A.-120 B.120 C.-15 D.154.將函數(shù)的圖象向右平移個(gè)周期后,所得圖象關(guān)于軸對(duì)稱,則的最小正值是()A. B. C. D.5.某高中高三(1)班為了沖刺高考,營(yíng)造良好的學(xué)習(xí)氛圍,向班內(nèi)同學(xué)征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細(xì)節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰寫的,班主任對(duì)三人進(jìn)行了問話,得到回復(fù)如下:小王說:“入班即靜”是我寫的;小董說:“天道酬勤”不是小王寫的,就是我寫的;小李說:“細(xì)節(jié)決定成敗”不是我寫的.若三人的說法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李6.已知橢圓(a>b>0)與雙曲線(a>0,b>0)的焦點(diǎn)相同,則雙曲線漸近線方程為()A. B.C. D.7.已知,如圖是求的近似值的一個(gè)程序框圖,則圖中空白框中應(yīng)填入A. B.C. D.8.若函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對(duì)稱點(diǎn)在的圖象上,則的取值范圍是()A. B. C. D.9.設(shè)實(shí)數(shù)、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.1410.一個(gè)圓錐的底面和一個(gè)半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個(gè)圓錐軸截面底角的大小是()A. B. C. D.11.已知實(shí)數(shù)、滿足不等式組,則的最大值為()A. B. C. D.12.公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為()A.米 B.米C.米 D.米二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)對(duì)于都有,且周期為2,當(dāng)時(shí),,則________________________.14.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為等邊三角形,則雙曲線的離心率為______.15.某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________.16.棱長(zhǎng)為的正四面體與正三棱錐的底面重合,若由它們構(gòu)成的多面體的頂點(diǎn)均在一球的球面上,則正三棱錐的內(nèi)切球半徑為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.18.(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.19.(12分)已知橢圓的離心率為,且過點(diǎn).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)點(diǎn)P是橢圓上異于短軸端點(diǎn)A,B的任意一點(diǎn),過點(diǎn)P作軸于Q,線段PQ的中點(diǎn)為M.直線AM與直線交于點(diǎn)N,D為線段BN的中點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),試判斷以O(shè)D為直徑的圓與點(diǎn)M的位置關(guān)系.20.(12分)已知橢圓()的離心率為,且經(jīng)過點(diǎn).(1)求橢圓的方程;(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對(duì)稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.21.(12分)棉花的纖維長(zhǎng)度是評(píng)價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評(píng)價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取21根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長(zhǎng)度不低于311的為“長(zhǎng)纖維”,其余為“短纖維”)纖維長(zhǎng)度甲地(根數(shù))34454乙地(根數(shù))112116(1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過1.125的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.甲地乙地總計(jì)長(zhǎng)纖維短纖維總計(jì)附:(1);(2)臨界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現(xiàn)從上述41根纖維中,按纖維長(zhǎng)度是否為“長(zhǎng)纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測(cè),在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.22.(10分)已知函數(shù).(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函數(shù)的定義域和值域.
2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【答案解析】
由,得到,得出,再結(jié)合三角函數(shù)的基本關(guān)系式,即可求解.【題目詳解】由題意,角滿足,則,又由角A是三角形的內(nèi)角,所以,所以,因?yàn)?,所?故選:A.【答案點(diǎn)睛】本題主要考查了正弦函數(shù)的性質(zhì),以及三角函數(shù)的基本關(guān)系式和正弦的倍角公式的化簡(jiǎn)、求值問題,著重考查了推理與計(jì)算能力.2.A【答案解析】
根據(jù)題意可知最后計(jì)算的結(jié)果為的最大公約數(shù).【題目詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計(jì)算的結(jié)果為的最大公約數(shù),按流程圖計(jì)算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【答案點(diǎn)睛】本題考查的是利用更相減損術(shù)求兩個(gè)數(shù)的最大公約數(shù),難度較易.3.C【答案解析】
寫出展開式的通項(xiàng)公式,令,即,則可求系數(shù).【題目詳解】的展開式的通項(xiàng)公式為,令,即時(shí),系數(shù)為.故選C【答案點(diǎn)睛】本題考查二項(xiàng)式展開的通項(xiàng)公式,屬基礎(chǔ)題.4.D【答案解析】
由函數(shù)的圖象平移變換公式求出變換后的函數(shù)解析式,再利用誘導(dǎo)公式得到關(guān)于的方程,對(duì)賦值即可求解.【題目詳解】由題意知,函數(shù)的最小正周期為,即,由函數(shù)的圖象平移變換公式可得,將函數(shù)的圖象向右平移個(gè)周期后的解析式為,因?yàn)楹瘮?shù)的圖象關(guān)于軸對(duì)稱,所以,即,所以當(dāng)時(shí),有最小正值為.故選:D【答案點(diǎn)睛】本題考查函數(shù)的圖象平移變換公式和三角函數(shù)誘導(dǎo)公式及正余弦函數(shù)的性質(zhì);熟練掌握誘導(dǎo)公式和正余弦函數(shù)的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.5.D【答案解析】
根據(jù)題意,分別假設(shè)一個(gè)正確,推理出與假設(shè)不矛盾,即可得出結(jié)論.【題目詳解】解:由題意知,若只有小王的說法正確,則小王對(duì)應(yīng)“入班即靜”,而否定小董說法后得出:小王對(duì)應(yīng)“天道酬勤”,則矛盾;若只有小董的說法正確,則小董對(duì)應(yīng)“天道酬勤”,否定小李的說法后得出:小李對(duì)應(yīng)“細(xì)節(jié)決定成敗”,所以剩下小王對(duì)應(yīng)“入班即靜”,但與小王的錯(cuò)誤的說法矛盾;若小李的說法正確,則“細(xì)節(jié)決定成敗”不是小李的,則否定小董的說法得出:小王對(duì)應(yīng)“天道酬勤”,所以得出“細(xì)節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.【答案點(diǎn)睛】本題考查推理證明的實(shí)際應(yīng)用.6.A【答案解析】
由題意可得,即,代入雙曲線的漸近線方程可得答案.【題目詳解】依題意橢圓與雙曲線即的焦點(diǎn)相同,可得:,即,∴,可得,雙曲線的漸近線方程為:,故選:A.【答案點(diǎn)睛】本題考查橢圓和雙曲線的方程和性質(zhì),考查漸近線方程的求法,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題.7.C【答案解析】
由于中正項(xiàng)與負(fù)項(xiàng)交替出現(xiàn),根據(jù)可排除選項(xiàng)A、B;執(zhí)行第一次循環(huán):,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時(shí)不成立,;執(zhí)行第二次循環(huán):由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時(shí)不成立,;執(zhí)行第三次循環(huán):由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應(yīng)填入,故選C.8.D【答案解析】
由題可知,可轉(zhuǎn)化為曲線與有兩個(gè)公共點(diǎn),可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,分析即得解【題目詳解】函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對(duì)稱點(diǎn)在上,即曲線與有兩個(gè)公共點(diǎn),即方程有兩解,即有兩解,令,則,則當(dāng)時(shí),;當(dāng)時(shí),,故時(shí)取得極大值,也即為最大值,當(dāng)時(shí),;當(dāng)時(shí),,所以滿足條件.故選:D【答案點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.9.D【答案解析】
做出滿足條件的可行域,根據(jù)圖形即可求解.【題目詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當(dāng)目標(biāo)函數(shù)過點(diǎn)時(shí),取得最小值,由,解得,即,所以的最小值為.故選:D.【答案點(diǎn)睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.10.D【答案解析】
設(shè)圓錐的母線長(zhǎng)為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【題目詳解】設(shè)圓錐的母線長(zhǎng)為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【答案點(diǎn)睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.11.A【答案解析】
畫出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解,得到答案.【題目詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標(biāo)函數(shù),化為直線,當(dāng)直線過點(diǎn)A時(shí),此時(shí)直線在y軸上的截距最大,目標(biāo)函數(shù)取得最大值,又由,解得,所以目標(biāo)函數(shù)的最大值為,故選A.【答案點(diǎn)睛】本題主要考查簡(jiǎn)單線性規(guī)劃求解目標(biāo)函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計(jì)算能力,屬于基礎(chǔ)題.12.D【答案解析】
根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【題目詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【答案點(diǎn)睛】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
利用,且周期為2,可得,得.【題目詳解】∵,且周期為2,∴,又當(dāng)時(shí),,∴,故答案為:【答案點(diǎn)睛】本題考查函數(shù)的周期性與對(duì)稱性的應(yīng)用,考查轉(zhuǎn)化能力,屬于基礎(chǔ)題.14.2【答案解析】
根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【題目詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.【答案點(diǎn)睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15.3【答案解析】由已知中的三視圖可得該幾何體是一個(gè)以直角梯形為底面,梯形上下邊長(zhǎng)為和,高為,如圖所示,平面,所以底面積為,幾何體的高為,所以其體積為.點(diǎn)睛:在由三視圖還原為空間幾何體的實(shí)際形狀時(shí),要從三個(gè)視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實(shí)線,不可見輪廓線在三視圖中為虛線.在還原空間幾何體實(shí)際形狀時(shí),一般是以正視圖和俯視圖為主,結(jié)合側(cè)視圖進(jìn)行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解.16.【答案解析】
由棱長(zhǎng)為的正四面體求出外接球的半徑,進(jìn)而求出正三棱錐的高及側(cè)棱長(zhǎng),可得正三棱錐的三條側(cè)棱兩兩相互垂直,進(jìn)而求出體積與表面積,設(shè)內(nèi)切圓的半徑,由等體積,求出內(nèi)切圓的半徑.【題目詳解】由題意可知:多面體的外接球即正四面體的外接球作面交于,連接,如圖則,且為外接球的直徑,可得,設(shè)三角形的外接圓的半徑為,則,解得,設(shè)外接球的半徑為,則可得,即,解得,設(shè)正三棱錐的高為,因?yàn)?,所以,所以,而,所以正三棱錐的三條側(cè)棱兩兩相互垂直,所以,設(shè)內(nèi)切球的半徑為,,即解得:.故答案為:.【答案點(diǎn)睛】本題考查多面體與球的內(nèi)切和外接問題,考查轉(zhuǎn)化與化歸思想,考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意借助幾何體的直觀圖進(jìn)行分析.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見解析【答案解析】
(1)將函數(shù)整理為分段函數(shù)形式可得,進(jìn)而分類討論求解不等式即可;(2)先利用絕對(duì)值不等式的性質(zhì)得到的最大值為3,再利用均值定理證明即可.【題目詳解】(1)①當(dāng)時(shí),恒成立,;②當(dāng)時(shí),,即,;③當(dāng)時(shí),顯然不成立,不合題意;綜上所述,不等式的解集為.(2)由(1)知,于是由基本不等式可得(當(dāng)且僅當(dāng)時(shí)取等號(hào))(當(dāng)且僅當(dāng)時(shí)取等號(hào))(當(dāng)且僅當(dāng)時(shí)取等號(hào))上述三式相加可得(當(dāng)且僅當(dāng)時(shí)取等號(hào)),,故得證.【答案點(diǎn)睛】本題考查解絕對(duì)值不等式和利用均值定理證明不等式,考查絕對(duì)值不等式的最值的應(yīng)用,解題關(guān)鍵是掌握分類討論解決帶絕對(duì)值不等式的方法,考查了分析能力和計(jì)算能力,屬于中檔題.18.(1)整數(shù)的最大值為;(2)見解析.【答案解析】
(1)將不等式變形為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得到,利用不等式的基本性質(zhì)可證得結(jié)論.【題目詳解】(1)由得,令,,令,對(duì)恒成立,所以,函數(shù)在上單調(diào)遞增,,,,,故存在使得,即,從而當(dāng)時(shí),有,,所以,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),有,,所以,函數(shù)在上單調(diào)遞減.所以,,,因此,整數(shù)的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,【答案點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性、最值中的應(yīng)用,以及放縮法證明不等式的技巧,屬于難題.19.(1)(2)點(diǎn)在以為直徑的圓上【答案解析】
(1)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn),,則,,求出直線的方程,進(jìn)而求出點(diǎn)的坐標(biāo),再利用中點(diǎn)坐標(biāo)公式得到點(diǎn)的坐標(biāo),下面結(jié)合點(diǎn)在橢圓上證出,所以點(diǎn)在以為直徑的圓上.【題目詳解】(1)由題意可知,,解得,橢圓的標(biāo)準(zhǔn)方程為:.(2)設(shè)點(diǎn),,則,,直線的斜率為,直線的方程為:,令得,,點(diǎn)的坐標(biāo)為,,點(diǎn)的坐標(biāo)為,,,,又點(diǎn),在橢圓上,,,,點(diǎn)在以為直徑的圓上.【答案點(diǎn)睛】本題主要考查了橢圓方程,考查了中點(diǎn)坐標(biāo)公式,以及平面向量的基本知識(shí),屬于中檔題.20.(1)(2)見解析【答案解析】
(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關(guān)于軸對(duì)稱,等價(jià)于的斜率互為相反數(shù),即,整理.設(shè)直線的方程為,與橢圓聯(lián)立,將韋達(dá)定理代入整理即可.【題目詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點(diǎn),滿足直線與直線恰關(guān)于軸對(duì)稱.設(shè)直線的方程為,與橢圓聯(lián)立,整理得,.設(shè),,定點(diǎn).(依題意則由韋達(dá)定理可得,,.直線與直線恰關(guān)于軸對(duì)稱,等價(jià)于的斜率互為相反數(shù).所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當(dāng),即時(shí),直線與直線恰關(guān)于軸對(duì)稱成立.特別地,當(dāng)直線為軸時(shí),也符合題意.綜上所述,存在軸上的定點(diǎn),滿足直線與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 寵物醫(yī)院院感知識(shí)與防控措施考核試卷
- 建筑材批發(fā)供應(yīng)鏈管理考核試卷
- 市場(chǎng)需求預(yù)測(cè)與趨勢(shì)分析考核試卷
- 2025-2030年地下三維成像雷達(dá)行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報(bào)告
- 2025-2030年廚房重油污清潔劑行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2025-2030年即食章魚燒罐頭企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 摩托車發(fā)動(dòng)機(jī)氣缸磨損測(cè)量考核試卷
- 2025-2030年數(shù)據(jù)報(bào)告卡行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報(bào)告
- 2025-2030年手持削皮器行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報(bào)告
- 2025-2030年指甲油顏色定制服務(wù)行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 高考模擬作文“文化自信:春節(jié)走向世界”導(dǎo)寫+范文3篇
- 藥品管理法律制度的創(chuàng)新與探索
- 蘇教版三年級(jí)下冊(cè)數(shù)學(xué)計(jì)算能手1000題帶答案
- 道路清障救援作業(yè)服務(wù)投標(biāo)方案(完整技術(shù)標(biāo))
- 邁瑞醫(yī)療 -醫(yī)療器械-從全球器械巨頭發(fā)展看邁瑞海外進(jìn)擊之路
- 2014年10月自考00567馬列文論選讀試題及答案含解析
- 改善護(hù)理服務(wù)行動(dòng)計(jì)劃總結(jié)報(bào)告
- 智慧農(nóng)業(yè)整體架構(gòu)規(guī)劃設(shè)計(jì)方案
- 湖南汽車工程職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試參考試題庫(kù)(含答案)
- 第2課+古代希臘羅馬(教學(xué)設(shè)計(jì))-【中職專用】《世界歷史》(高教版2023基礎(chǔ)模塊)
- 中儲(chǔ)糧蘭州公司考試筆試題庫(kù)
評(píng)論
0/150
提交評(píng)論