




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter3TheTimeValueofMoneyChapter3TheTimeValueofMonAfterstudyingChapter3,youshouldbeableto:Understandwhatismeantby"thetimevalueofmoney."Understandtherelationshipbetweenpresentandfuturevalue.Describehowtheinterestratecanbeusedtoadjustthevalueofcashflows–bothforwardandbackward–toasinglepointintime.Calculateboththefutureandpresentvalueof:(a)anamountinvestedtoday;(b)astreamofequalcashflows(anannuity);and(c)astreamofmixedcashflows.Distinguishbetweenan“ordinaryannuity”andan“annuitydue.”Useinterestfactortablesandunderstandhowtheyprovideashortcuttocalculatingpresentandfuturevalues.Useinterestfactortablestofindanunknowninterestrateorgrowthratewhenthenumberoftimeperiodsandfutureandpresentvaluesareknown.Buildan“amortizationschedule”foraninstallment-styleloan.AfterstudyingChapter3,youTheTimeValueofMoney
TheInterestRateSimpleInterestCompoundInterestAmortizingaLoanCompoundingMoreThanOnceperYearTheTimeValueofMoneyTheInObviously,$10,000today.YoualreadyrecognizethatthereisTIMEVALUETOMONEY!!TheInterestRateWhichwouldyouprefer–$10,000todayor$10,000in5years?Obviously,$10,000today.TheITIMEallowsyoutheopportunitytopostponeconsumptionandearnINTEREST.WhyTIME?WhyisTIMEsuchanimportantelementinyourdecision?TIMEallowsyoutheopportunitTypesofInterestCompoundInterestInterestpaid(earned)onanypreviousinterestearned,aswellasontheprincipalborrowed(lent).SimpleInterestInterestpaid(earned)ononlytheoriginalamount,orprincipal,borrowed(lent).TypesofInterestCompoundInteSimpleInterestFormulaFormula
SI=P0(i)(n)
SI: SimpleInterest
P0: Deposittoday(t=0)
i: InterestRateperPeriod n: NumberofTimePeriodsSimpleInterestFormulaFormulaSI =P0(i)(n)
=$1,000(0.07)(2) =$140SimpleInterestExampleAssumethatyoudeposit$1,000inanaccountearning7%simpleinterestfor2years.Whatistheaccumulatedinterestattheendofthe2ndyear?SI =P0(i)(n) =$1,000(
FV =P0+SI =$1,000
+$140 =
$1,140FutureValue
isthevalueatsomefuturetimeofapresentamountofmoney,oraseriesofpayments,evaluatedatagiveninterestrate.SimpleInterest(FV)WhatistheFutureValue(FV)ofthedeposit? FV =P0+SI =$1,0
ThePresentValueissimplythe $1,000youoriginallydeposited. Thatisthevaluetoday!PresentValue
isthecurrentvalueofafutureamountofmoney,oraseriesofpayments,evaluatedatagiveninterestrate.SimpleInterest(PV)WhatisthePresentValue(PV)ofthepreviousproblem? ThePresentValueissimplyWhyCompoundInterest?FutureValue(U.S.Dollars)WhyCompoundInterest?FutureV
Assumethatyoudeposit$1,000atacompoundinterestrateof7%for2years.FutureValue
SingleDeposit(Graphic)
0
1
2$1,000FV27% Assumethatyoudeposit$1,00FV1 =P0(1+i)1 =$1,000
(1.07) =$1,070CompoundInterest Youearned$70interestonyour$1,000depositoverthefirstyear. Thisisthesameamountofinterestyouwouldearnundersimpleinterest.FutureValue
SingleDeposit(Formula)FV1 =P0(1+i)1 =$1,000FV1 =P0
(1+i)1 =$1,000(1.07) =$1,070FV2 =FV1(1+i)1 =P0(1+i)(1+i)=$1,000(1.07)(1.07) =P0
(1+i)2 =$1,000(1.07)2 =$1,144.90YouearnedanEXTRA
$4.90inYear2withcompoundoversimpleinterest.FutureValue SingleDeposit(Formula)FV1 =P0(1+i)1 =$1,0
FV1 =P0(1+i)1
FV2 =P0(1+i)2GeneralFutureValueFormula:
FVn =P0(1+i)n
or FVn=P0(FVIFi,n)–SeeTableIGeneralFutureValueFormulaetc. FV1 =P0(1+i)1GeneralFuFVIFi,n
isfoundonTableIattheendofthebook.ValuationUsingTableIFVIFi,nisfoundonTableIVa
FV2 =$1,000(FVIF7%,2) =$1,000(1.145) =$1,145
[DuetoRounding]UsingFutureValueTables FV2 =$1,000(FVIF7%,2) =
JulieMillerwantstoknowhowlargeherdepositof$10,000todaywillbecomeatacompoundannualinterestrateof10%for5years.StoryProblemExample
012345$10,000FV510% JulieMillerwantstoknowhoCalculationbasedonTableI:
FV5
=$10,000
(FVIF10%,5)
=$10,000
(1.611) =$16,110 [DuetoRounding]StoryProblemSolutionCalculationbasedongeneralformula:
FVn =P0(1+i)n
FV5
=$10,000(1+0.10)5 =$16,105.10CalculationbasedonTableI: Wewillusethe“Rule-of-72”.DoubleYourMoney!!!Quick!Howlongdoesittaketodouble$5,000atacompoundrateof12%peryear(approx.)?Wewillusethe“Rule-of-72”.DApprox.YearstoDouble=72
/i%72/12%=6Years[ActualTimeis6.12Years]The“Rule-of-72”Quick!Howlongdoesittaketodouble$5,000atacompoundrateof12%peryear(approx.)?Approx.YearstoDouble=72/Assumethatyouneed$1,000
in2years.Let’sexaminetheprocesstodeterminehowmuchyouneedtodeposittodayatadiscountrateof7%compoundedannually.
0
1
2$1,0007%PV1PV0PresentValue SingleDeposit(Graphic)Assumethatyouneed$1,000in
PV0=FV2/(1+i)2 =$1,000
/(1.07)2 =FV2/(1+i)2
=$873.44
0
1
2$1,0007%PV0PresentValue
SingleDeposit(Formula)PV0=FV2/(1+i)2 =$1,
PV0
=FV1/(1+i)1
PV0=FV2/(1+i)2GeneralPresentValueFormula:
PV0 =FVn/(1+i)n
or PV0=FVn(PVIFi,n)–SeeTableIIetc.GeneralPresentValueFormula PV0=FV1/(1+i)1etc.GenPVIFi,n
isfoundonTableIIattheendofthebook.ValuationUsingTableIIPVIFi,nisfoundonTableIIV
PV2 =$1,000(PVIF7%,2) =$1,000(.873) =$873
[DuetoRounding]UsingPresentValueTables PV2 =$1,000(PVIF7%,2) =
JulieMillerwantstoknowhowlargeofadeposittomakesothatthemoneywillgrowto$10,000
in5yearsatadiscountrateof10%.
012345$10,000PV010%StoryProblemExample JulieMillerwantstoknowho
Calculationbasedongeneralformula:
PV0 =FVn/(1+i)n
PV0
=$10,000
/(1+0.10)5 =$6,209.21
CalculationbasedonTableI:
PV0
=$10,000
(PVIF10%,5)
=$10,000
(0.621) =$6,210.00
[DuetoRounding]StoryProblemSolution CalculationbasedongeneralOrdinaryAnnuity:Paymentsorreceiptsoccurattheendofeachperiod.AnnuityDue:Paymentsorreceiptsoccuratthe beginningofeachperiod.AnAnnuityrepresentsaseriesofequalpayments(orreceipts)occurringoveraspecifiednumberofequidistantperiods.TypesofAnnuitiesOrdinaryAnnuity:Paymentsor
StudentLoanPaymentsCarLoanPaymentsInsurancePremiumsMortgagePaymentsRetirementSavingsExamplesofAnnuitiesStudentLoanPaymentsExample0123
$100$100$100(OrdinaryAnnuity)EndofPeriod1EndofPeriod2TodayEqualCashFlowsEach1PeriodApartEndofPeriod3PartsofanAnnuity010123$100$100$100(AnnuityDue)BeginningofPeriod1BeginningofPeriod2TodayEqualCashFlowsEach1PeriodApartBeginningofPeriod3PartsofanAnnuity01FVAn=R(1+i)n-1+R(1+i)n-2+ ...+R(1+i)1
+R(1+i)0
RRR012nn+1FVAnR
=PeriodicCashFlowCashflowsoccurattheendoftheperiodi%...Overviewofan
OrdinaryAnnuity–FVAFVAn=R(1+i)n-1+R(1+i)n
FVA3=$1,000(1.07)2+ $1,000(1.07)1+$1,000(1.07)0
=$1,145
+
$1,070
+
$1,000
=
$3,215$1,000$1,000$1,0000123
4$3,215=FVA37%$1,070$1,145CashflowsoccurattheendoftheperiodExampleofan
OrdinaryAnnuity–FVA FVA3=$1,000(1.07)2+ Thefuturevalueofanordinaryannuitycanbeviewedasoccurringattheendofthelastcashflowperiod,whereasthefuturevalueofanannuityduecanbeviewedasoccurringatthebeginningofthelastcashflowperiod.HintonAnnuityValuationThefuturevalueofanordinar
FVAn =R(FVIFAi%,n) FVA3 =$1,000(FVIFA7%,3) =$1,000(3.215)=$3,215ValuationUsingTableIII FVAn =R(FVIFAi%,n) FVA3FVADn=R(1+i)n+R(1+i)n-1+ ...+R(1+i)2
+R(1+i)1 =FVAn(1+i)
RRRRR0123n–1
nFVADni%...OverviewViewofan
AnnuityDue–FVADCashflowsoccuratthebeginningoftheperiodFVADn=R(1+i)n+R(1+i)
FVAD3=$1,000(1.07)3+ $1,000(1.07)2+$1,000(1.07)1
=$1,225
+
$1,145
+
$1,070
=
$3,440$1,000$1,000$1,000$1,07001234$3,440=FVAD37%$1,225$1,145Exampleofan
AnnuityDue–FVADCashflowsoccuratthebeginningoftheperiod FVAD3=$1,000(1.07)3+ FVADn =R(FVIFAi%,n)(1+i) FVAD3 =$1,000(FVIFA7%,3)(1.07) =$1,000(3.215)(1.07)=$3,440ValuationUsingTableIIIFVADn =R(FVIFAi%,n)(1+i) PVAn=R/(1+i)1+R/(1+i)2 +...+R/(1+i)n
RRR012nn+1PVAnR
=PeriodicCashFlowi%...Overviewofan
OrdinaryAnnuity–PVACashflowsoccurattheendoftheperiodPVAn=R/(1+i)1+R/(1+i)2
PVA3= $1,000/(1.07)1+ $1,000/(1.07)2+ $1,000/(1.07)3
=$934.58+$873.44+$816.30 =
$2,624.32$1,000$1,000$1,00001234$2,624.32=PVA37%$934.58$873.44$816.30Exampleofan
OrdinaryAnnuity–PVACashflowsoccurattheendoftheperiod PVA3= $1,000/(1.07)1+ Thepresentvalueofanordinaryannuitycanbeviewedasoccurringatthebeginningofthefirstcashflowperiod,whereasthefuturevalueofanannuityduecanbeviewedasoccurringattheendofthefirstcashflowperiod.HintonAnnuityValuationThepresentvalueofanordina
PVAn =R(PVIFAi%,n) PVA3 =$1,000(PVIFA7%,3) =$1,000(2.624)=$2,624ValuationUsingTableIV PVAn =R(PVIFAi%,n) PVA3PVADn=R/(1+i)0+R/(1+i)1+...+R/(1+i)n–1
=PVAn(1+i)
RRRR012n–1
nPVADnR:PeriodicCashFlowi%...Overviewofan
AnnuityDue–PVADCashflowsoccuratthebeginningoftheperiodPVADn=R/(1+i)0+R/(1+iPVADn=$1,000/(1.07)0+$1,000/(1.07)1+ $1,000/(1.07)2=$2,808.02$1,000.00$1,000$1,0000123
4$2,808.02=PVADn7%$934.58$873.44Exampleofan
AnnuityDue–PVADCashflowsoccuratthebeginningoftheperiodPVADn=$1,000/(1.07)0+$1,00PVADn=R(PVIFAi%,n)(1+i) PVAD3 =$1,000(PVIFA7%,3)(1.07) =$1,000(2.624)(1.07)=$2,808ValuationUsingTableIVPVADn=R(PVIFAi%,n)(1+i1.Readproblemthoroughly2.Createatimeline3.Putcashflowsandarrowsontimeline4.DetermineifitisaPVorFVproblem5.Determineifsolutioninvolvesasingle CF,annuitystream(s),ormixedflow6.Solvetheproblem7.Checkwithfinancialcalculator(optional)StepstoSolveTimeValueofMoneyProblems1.ReadproblemthoroughlySte
JulieMillerwillreceivethesetofcashflowsbelow.WhatisthePresentValueatadiscountrateof10%.
012345
$600$600$400$400$100PV010%MixedFlowsExample JulieMillerwillreceivethe
012345
$600$600$400$400$10010%$545.45$495.87$300.53$273.21$62.09$1677.15=PV0
oftheMixedFlow012
012345
$600$600$400$400$10010%$1,041.60$573.57$62.10$1,677.27
=PV0
ofMixedFlow[UsingTables]$600(PVIFA10%,2)=$600(1.736)=$1,041.60$400(PVIFA10%,2)(PVIF10%,2)=$400(1.736)(0.826)=$573.57$100(PVIF10%,5)=$100(0.621)=$62.10012GeneralFormula:FVn =PV0(1+[i/m])mn
n: NumberofYears m: CompoundingPeriodsperYear i: AnnualInterestRate FVn,m:FVattheendofYearn
PV0: PVoftheCashFlowtodayFrequencyofCompoundingGeneralFormula:FrequencyofCJulieMillerhas$1,000toinvestfor2Yearsatanannualinterestrateof12%.Annual FV2 =1,000(1+[0.12/1])(1)(2) =1,254.40Semi FV2 =1,000(1+[0.12/2])(2)(2) =1,262.48ImpactofFrequencyJulieMillerhas$1,000toinvQrtly FV2 =1,000(1+[0.12/4])(4)(2) =1,266.77MonthlyFV2
=1,000(1+[0.12/12])(12)(2) =1,269.73Daily FV2
=1,000(1+[0.12/365])(365)(2) =1,271.20ImpactofFrequencyQrtly FV2 =1,000(1+[0.EffectiveAnnualInterestRateTheactualrateofinterestearned(paid)afteradjustingthenominalrate
forfactorssuchasthenumberofcompoundingperiodsperyear.(1+[i
/m])m
–1EffectiveAnnual
InterestRateEffectiveAnnualInterestRateBasketWonders(BW)hasa$1,000CDatthebank.Theinterestrateis6%
compoundedquarterlyfor1year.WhatistheEffectiveAnnualInterestRate(EAR)?
EAR =(1+0.06/4)4–1 =1.0614-1=0.0614or6.14%!BWsEffective
AnnualInterestRateBasketWonders(BW)hasa$1,01. Calculatethepaymentperperiod.2. DeterminetheinterestinPeriodt. (LoanBalanceatt–1)x(i%/m)3. ComputeprincipalpaymentinPeriodt. (Payment-InterestfromStep2)4. DetermineendingbalanceinPeriodt. (Balance-principalpaymentfromStep3)5. StartagainatStep2andrepeat.StepstoAmortizingaLoan1. CalculatethepaymentperJulieMillerisborrowing$10,000atacompoundannualinterestrateof12%.Amortizetheloanifannualpaymentsaremadefor5years.Step1: Payment
PV0 =R(PVIFAi%,n)
$10,000 =R(PVIFA12%,5)
$10,000 =R(3.605)
R=$10,000/3.605=$2,774AmortizingaLoanExampleJulieMillerisborrowing$10,EndofYearPaymentInterestPrincipalEndingBalance0———$10,0001$2,774$1,200$1,5748,42622,7741,0111,7636,66332,7748001,9744,68942,7745632,2112,47852,7752972,4780$13,871$3,871$10,000[LastPaymentSlightlyHigherDuetoRounding]AmortizingaLoanExampleEndofYearPaymentInterestPrinc2. CalculateDebtOutstanding–Thequantityofoutstandingdebtmaybeusedinfinancingtheday-to-dayactivitiesofthefirm.1. DetermineInterestExpense– Interestexpensesmayreduce taxableincomeofthefirm.UsefulnessofAmortization2. CalculateDebtOutstandingChapter3TheTimeValueofMoneyChapter3TheTimeValueofMonAfterstudyingChapter3,youshouldbeableto:Understandwhatismeantby"thetimevalueofmoney."Understandtherelationshipbetweenpresentandfuturevalue.Describehowtheinterestratecanbeusedtoadjustthevalueofcashflows–bothforwardandbackward–toasinglepointintime.Calculateboththefutureandpresentvalueof:(a)anamountinvestedtoday;(b)astreamofequalcashflows(anannuity);and(c)astreamofmixedcashflows.Distinguishbetweenan“ordinaryannuity”andan“annuitydue.”Useinterestfactortablesandunderstandhowtheyprovideashortcuttocalculatingpresentandfuturevalues.Useinterestfactortablestofindanunknowninterestrateorgrowthratewhenthenumberoftimeperiodsandfutureandpresentvaluesareknown.Buildan“amortizationschedule”foraninstallment-styleloan.AfterstudyingChapter3,youTheTimeValueofMoney
TheInterestRateSimpleInterestCompoundInterestAmortizingaLoanCompoundingMoreThanOnceperYearTheTimeValueofMoneyTheInObviously,$10,000today.YoualreadyrecognizethatthereisTIMEVALUETOMONEY!!TheInterestRateWhichwouldyouprefer–$10,000todayor$10,000in5years?Obviously,$10,000today.TheITIMEallowsyoutheopportunitytopostponeconsumptionandearnINTEREST.WhyTIME?WhyisTIMEsuchanimportantelementinyourdecision?TIMEallowsyoutheopportunitTypesofInterestCompoundInterestInterestpaid(earned)onanypreviousinterestearned,aswellasontheprincipalborrowed(lent).SimpleInterestInterestpaid(earned)ononlytheoriginalamount,orprincipal,borrowed(lent).TypesofInterestCompoundInteSimpleInterestFormulaFormula
SI=P0(i)(n)
SI: SimpleInterest
P0: Deposittoday(t=0)
i: InterestRateperPeriod n: NumberofTimePeriodsSimpleInterestFormulaFormulaSI =P0(i)(n)
=$1,000(0.07)(2) =$140SimpleInterestExampleAssumethatyoudeposit$1,000inanaccountearning7%simpleinterestfor2years.Whatistheaccumulatedinterestattheendofthe2ndyear?SI =P0(i)(n) =$1,000(
FV =P0+SI =$1,000
+$140 =
$1,140FutureValue
isthevalueatsomefuturetimeofapresentamountofmoney,oraseriesofpayments,evaluatedatagiveninterestrate.SimpleInterest(FV)WhatistheFutureValue(FV)ofthedeposit? FV =P0+SI =$1,0
ThePresentValueissimplythe $1,000youoriginallydeposited. Thatisthevaluetoday!PresentValue
isthecurrentvalueofafutureamountofmoney,oraseriesofpayments,evaluatedatagiveninterestrate.SimpleInterest(PV)WhatisthePresentValue(PV)ofthepreviousproblem? ThePresentValueissimplyWhyCompoundInterest?FutureValue(U.S.Dollars)WhyCompoundInterest?FutureV
Assumethatyoudeposit$1,000atacompoundinterestrateof7%for2years.FutureValue
SingleDeposit(Graphic)
0
1
2$1,000FV27% Assumethatyoudeposit$1,00FV1 =P0(1+i)1 =$1,000
(1.07) =$1,070CompoundInterest Youearned$70interestonyour$1,000depositoverthefirstyear. Thisisthesameamountofinterestyouwouldearnundersimpleinterest.FutureValue
SingleDeposit(Formula)FV1 =P0(1+i)1 =$1,000FV1 =P0
(1+i)1 =$1,000(1.07) =$1,070FV2 =FV1(1+i)1 =P0(1+i)(1+i)=$1,000(1.07)(1.07) =P0
(1+i)2 =$1,000(1.07)2 =$1,144.90YouearnedanEXTRA
$4.90inYear2withcompoundoversimpleinterest.FutureValue SingleDeposit(Formula)FV1 =P0(1+i)1 =$1,0
FV1 =P0(1+i)1
FV2 =P0(1+i)2GeneralFutureValueFormula:
FVn =P0(1+i)n
or FVn=P0(FVIFi,n)–SeeTableIGeneralFutureValueFormulaetc. FV1 =P0(1+i)1GeneralFuFVIFi,n
isfoundonTableIattheendofthebook.ValuationUsingTableIFVIFi,nisfoundonTableIVa
FV2 =$1,000(FVIF7%,2) =$1,000(1.145) =$1,145
[DuetoRounding]UsingFutureValueTables FV2 =$1,000(FVIF7%,2) =
JulieMillerwantstoknowhowlargeherdepositof$10,000todaywillbecomeatacompoundannualinterestrateof10%for5years.StoryProblemExample
012345$10,000FV510% JulieMillerwantstoknowhoCalculationbasedonTableI:
FV5
=$10,000
(FVIF10%,5)
=$10,000
(1.611) =$16,110 [DuetoRounding]StoryProblemSolutionCalculationbasedongeneralformula:
FVn =P0(1+i)n
FV5
=$10,000(1+0.10)5 =$16,105.10CalculationbasedonTableI: Wewillusethe“Rule-of-72”.DoubleYourMoney!!!Quick!Howlongdoesittaketodouble$5,000atacompoundrateof12%peryear(approx.)?Wewillusethe“Rule-of-72”.DApprox.YearstoDouble=72
/i%72/12%=6Years[ActualTimeis6.12Years]The“Rule-of-72”Quick!Howlongdoesittaketodouble$5,000atacompoundrateof12%peryear(approx.)?Approx.YearstoDouble=72/Assumethatyouneed$1,000
in2years.Let’sexaminetheprocesstodeterminehowmuchyouneedtodeposittodayatadiscountrateof7%compoundedannually.
0
1
2$1,0007%PV1PV0PresentValue SingleDeposit(Graphic)Assumethatyouneed$1,000in
PV0=FV2/(1+i)2 =$1,000
/(1.07)2 =FV2/(1+i)2
=$873.44
0
1
2$1,0007%PV0PresentValue
SingleDeposit(Formula)PV0=FV2/(1+i)2 =$1,
PV0
=FV1/(1+i)1
PV0=FV2/(1+i)2GeneralPresentValueFormula:
PV0 =FVn/(1+i)n
or PV0=FVn(PVIFi,n)–SeeTableIIetc.GeneralPresentValueFormula PV0=FV1/(1+i)1etc.GenPVIFi,n
isfoundonTableIIattheendofthebook.ValuationUsingTableIIPVIFi,nisfoundonTableIIV
PV2 =$1,000(PVIF7%,2) =$1,000(.873) =$873
[DuetoRounding]UsingPresentValueTables PV2 =$1,000(PVIF7%,2) =
JulieMillerwantstoknowhowlargeofadeposittomakesothatthemoneywillgrowto$10,000
in5yearsatadiscountrateof10%.
012345$10,000PV010%StoryProblemExample JulieMillerwantstoknowho
Calculationbasedongeneralformula:
PV0 =FVn/(1+i)n
PV0
=$10,000
/(1+0.10)5 =$6,209.21
CalculationbasedonTableI:
PV0
=$10,000
(PVIF10%,5)
=$10,000
(0.621) =$6,210.00
[DuetoRounding]StoryProblemSolution CalculationbasedongeneralOrdinaryAnnuity:Paymentsorreceiptsoccurattheendofeachperiod.AnnuityDue:Paymentsorreceiptsoccuratthe beginningofeachperiod.AnAnnuityrepresentsaseriesofequalpayments(orreceipts)occurringoveraspecifiednumberofequidistantperiods.TypesofAnnuitiesOrdinaryAnnuity:Paymentsor
StudentLoanPaymentsCarLoanPaymentsInsurancePremiumsMortgagePaymentsRetirementSavingsExamplesofAnnuitiesStudentLoanPaymentsExample0123
$100$100$100(OrdinaryAnnuity)EndofPeriod1EndofPeriod2TodayEqualCashFlowsEach1PeriodApartEndofPeriod3PartsofanAnnuity010123$100$100$100(AnnuityDue)BeginningofPeriod1BeginningofPeriod2TodayEqualCashFlowsEach1PeriodApartBeginningofPeriod3PartsofanAnnuity01FVAn=R(1+i)n-1+R(1+i)n-2+ ...+R(1+i)1
+R(1+i)0
RRR012nn+1FVAnR
=PeriodicCashFlowCashflowsoccurattheendoftheperiodi%...Overviewofan
OrdinaryAnnuity–FVAFVAn=R(1+i)n-1+R(1+i)n
FVA3=$1,000(1.07)2+ $1,000(1.07)1+$1,000(1.07)0
=$1,145
+
$1,070
+
$1,000
=
$3,215$1,000$1,000$1,0000123
4$3,215=FVA37%$1,070$1,145CashflowsoccurattheendoftheperiodExampleofan
OrdinaryAnnuity–FVA FVA3=$1,000(1.07)2+ Thefuturevalueofanordinaryannuitycanbeviewedasoccurringattheendofthelastcashflowperiod,whereasthefuturevalueofanannuityduecanbeviewedasoccurringatthebeginningofthelastcashflowperiod.HintonAnnuityValuationThefuturevalueofanordinar
FVAn =R(FVIFAi%,n) FVA3 =$1,000(FVIFA7%,3) =$1,000(3.215)=$3,215ValuationUsingTableIII FVAn =R(FVIFAi%,n) FVA3FVADn=R(1+i)n+R(1+i)n-1+ ...+R(1+i)2
+R(1+i)1 =FVAn(1+i)
RRRRR0123n–1
nFVADni%...OverviewViewofan
AnnuityDue–FVADCashflowsoccuratthebeginningoftheperiodFVADn=R(1+i)n+R(1+i)
FVAD3=$1,000(1.07)3+ $1,000(1.07)2+$1,000(1.07)1
=$1,225
+
$1,145
+
$1,070
=
$3,440$1,000$1,000$1,000$1,07001234$3,440=FVAD37%$1,225$1,145Exampleofan
AnnuityDue–FVADCash
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 租客合同終止租房協(xié)議
- 技術(shù)開發(fā)與轉(zhuǎn)讓合同保密范本
- 智能化系統(tǒng)供貨安裝合同樣本
- 礦山企業(yè)輪換工勞動(dòng)合同模板及示例
- 農(nóng)村土地出租權(quán)屬合同樣本
- 標(biāo)準(zhǔn)貨物銷售合同簡(jiǎn)版
- 城市配送服務(wù)合同一覽
- 小學(xué)生種花演講課件
- 影視設(shè)備行業(yè)交流服務(wù)批發(fā)考核試卷
- 廣播電視節(jié)目的心理影響與教育意義考核試卷
- 低溫絕熱液氧瓶充裝操作規(guī)程模版(2篇)
- 大眾汽車使用說明書
- (高清版)DZT 0145-2017 土壤地球化學(xué)測(cè)量規(guī)程
- 供熱公司安全教育知識(shí)
- 高中英語課程綱要
- 《藥物設(shè)計(jì)學(xué)》課件
- 隨機(jī)微分方程
- 道路設(shè)施施工現(xiàn)場(chǎng)安全管理基本要求
- 公寓樓改造裝修施工方案
- 煙臺(tái)大學(xué)化學(xué)化工學(xué)院實(shí)驗(yàn)室儀器設(shè)備搬遷項(xiàng)目
- 2022版10kV架空配電線路無人機(jī)自主巡檢作業(yè)導(dǎo)則
評(píng)論
0/150
提交評(píng)論