版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Chapter6CollegeofNuclearScienceandTechnologyEmpiricalandPracticalRelationsforForced-ConvectionHeatTransfer
1Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology26-1Introduction
ThediscussionandanalysesofChapter5haveshownhowforced-convectionheattransfermaybecalculatedforseveralcasesofpracticalinterest;however,theproblemsconsideredwerethosethatcouldsolvedinananalyticalfashion.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology3But,itisnotalwayspossibletoobtainanalyticalsolutionstoconvectionproblems,andtheindividualisforcedtoresorttoexperimentalmethodstoobtaindesigninformation,aswellastosecurethemoreelusivedatethatincreasethephysicalunderstandingoftheprocess.Whatwehavetodo:Generalizetheresultsofone’sexperimentsinformofsomeempiricalcorrelationChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology4DifficultiesWhichvariablesshouldwemeasure?Whatfunctionalformshouldthedatabeorganizedinto?It’shardandexpensivetodotheexperiments,so,howmanyexperimentsshouldwedo?Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology5SimilarityConsiderationsPurpose:todoresearchontherelationshipbetweensimilarphysicalphenomena.Forsimilarphysicalphenomena:atcorrespondingtimewithcorrespondinglocationonthephysicalquantityrelatedwiththephenomenoncorrespondenceproportional.Forsametypeofphenomena:Phenomenondescribedbydifferentialequationswiththesameformandcontent.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology6CharacteristicsforphysicalphenomenasimilarityThesamecharacteristicnumbersareequalThereissomewhatrelationshipbetweendifferentcharacteristics.ForexampleChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology7TheconditionsforphysicalphenomenasimilaritySameidentifiedcharacteristicnumbersareequalIt’ssimilarforMonodromyconditions,whichincludesinitialconditions,boundaryconditionsandGeometricconditionsChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology8HowtogetdimensionlessgroupsSimilarityConsiderations:Toestablishthecolumnproportioncoefficientbetweenthetwophenomena,relationshipbetweentheexportofthesesimilaritycoefficientandobtainadimensionlessquantitybasedonKnownmathematicaldescriptionofthephysicalphenomena.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology9Phenomenon1:Phenomenon2:mathematicaldescriptionChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology10EstablishsimilarmultiplesRelationshipbetweenthemChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology11BerkeleynumberToobtaindimensionlessgroups
Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology12DimensionalAnalysisIndimensionalanalysis,dimensionalgroupssuchastheReynoldsandPrandtlnumbersarederivedfrompurelydimensionalandfunctionalconsiderations.FundamentalBasisTheoremof,Aconsistentdimensionlessequationshowingtherelationshipbetweenthenphysicalquantitiescouldbetransferredtoarelationshipwhichcontains(n-r)independentdimensionlessgroups.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology13AdvantagesofdimensionlessanalysisSimpleWecanstillobtaindimensionlessgroupswithoutknowingtheDifferentialEquationsFundamentalquantityintheSIUnitsLength[m],MASS[kg],time[s],ELECTRICCURRENT[A],thermodynamictemperature[K],amountofsubstance[mol],luminousintensity[cd]Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology14NowwecomebacktothedifficultiesWhichvariablesshouldwemeasure?
OnlyvariablesthatarecontainedincharacteristicnumbersWhatfunctionalformshouldthedatabeorganizedinto?
ArrangethedataaccordingtotherelationshipbetweenthecharacteristicnumbersIt’shardandexpensivetodotheexperiments,so,howmanyexperimentsshouldwedo?
ModularExperimentsundertheguidanceofthesimilarconsiderationChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology15Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology166-2EmpiricalRelationsForPipeAndTubeFlowCasesofUndevelopedFlowThecasesofundevelopedlaminarflowsystemswherethefluidpropertiesvarywidelywithtemperature,andturbulent-flowsystemsareconsiderablymorecomplicatedbutareofveryimportantpracticalinterestinheatexchangersandassociatedheat-transferequipment.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology17Fordesignandengineeringpurposes,empiricalcorrelationsareusuallyofgreatestpracticalutility.Forlaminarflow,thelengthoftheundevelopedpartundevelopeddeveloped(Averagefrom0tox)Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology18Forturbulentflow,thelengthoftheundevelopedpartundevelopeddeveloped(Averagefrom0tox)Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology19FurtherconsiderationtoBulktemperatureChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology20FortubeinFigure6-1thetotalenergyaddedcanbeexpressedintermsofbulk-temperaturebyIndifferentialequation,TheTwandTbherearethewallandbulktemperatureattheparticularxlocation.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology21Thetotalheattransfercanalsobeexpressedas[6-3]whereAisthetotalsurfaceareaforheattransfer.BecausebothTwandTbcanvaryalongthelengthofthetube,asuitableaveragingprocessmustbeadoptedforusewithEquation(6-3).Inchapter10we’lldiscussdifferentmethodsfortakingproperaccountoftemperaturevariationsinheatexchangers.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology22AtraditionexpressionforcalculationofheattransferinfullydevelopedturbulentflowinsmoothtubesForheatingofthefluidForcoolingofthefluidChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology23ConditionsChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology24WidetemperaturedifferencesThesepropertyvariationsmaybeevidencedbyachangeinthevelocityprofileasindicatedinthefigure.1.Inothermalflow2.Gasheating,Liquidcooling3.Liquidheating,gascoolingChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology25SomerelationstakepropertyvariationsintoaccountGasheatingGascoolingLiquidHeatingLiquidCoolingChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology26ConditionsChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology27ConditionsChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology28Ifthechannelthroughwhichthefluidflowsisnorcircularcrossthesection,itisrecommendedthattheheat-transfercorrelationsbebasedonthehydraulicdiameter.VariousSectionsDefinitionHydraulicdiameterAiscross-sectionalareaoftheflowPisthewettedperimeterChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology29ThehydraulicdiametershouldbeusedincalculatingtheNusseltandReynoldsnumbers,andinestablishingthefrictioncoefficientforusewithReynoldsanalogy.AverageNusseltnumberforuniformheatfluxinflowdirectionanduniformwalltemperatureatparticularflowcrosssectionAverageNusseltnumberforuniformwalltemperatureProductoffrictionfactorandReynoldsnumberbasedonhydraulicdiameterChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology30ConstantaxialwallheatfluxConstantaxialwalltemperatureHeattransferandfluidfrictionforfullydevelopedflowinductsofvariouscrosssectionsGeometryTriangleSquareRegularHexagonCircleRectanglewithb=2aChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology31Airat2atmand200℃isheatedasitflowsthroughatubewithadiameterof1in(2.54cm)atvelocityof10m/s.Calculatetheheattransferperunitlengthoftubeisconstant-heat-fluxconditionismaintainedatthewallandthewallandthewalltemperatureis20℃,abovetheairtemperature,allalongthelengthofthetube.Howmuchwouldthebulktemperatureincreasea3-mlengthofthetube?ExampleChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology32SolutionWefirstcalculatetheReynoldsnumbertodetermineiftheflowislaminarorturbulent,andthenselecttheappropriateempiricalcorrelationtocalculatetheheattransfer.Thepropertiesofairatabulktemperatureof200℃areChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology33Sotheflowisturbulent.WethereforeuseEquation(6-4a)tocalculatetheheat-transfercoefficientChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology34Theheat-flowperunitlengthisthenChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology35Wecannowmakeanenergybalancetocalculatetheincreaseinbulktemperatureina3.0-mlengthofthetubeChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology36SotheheattransferperunitlengthisChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology376-3FlowAcrossCylindersAndSpheresBoundary-layerSeparationLookatFigure6-7,itisnecessarytoincludethepressuregradientintheanalysisbecausethisinfluencestheboundary-layervelocityandcausesseparatedflowregiontodeveloponthebacksideofthecylinderwhenthefreestreamvelocityissufficientlylarge.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology38Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology39Figure6—8VelocitydistributionsindicatingflowseparationonacylinderincrossflowBoundaryLayerSeparationRegionChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology40Incaseofcylinder,onemightmeasurexdistancefromthefrontstagnationpointofthecylinder.Thusthepressureintheboundarylayershouldfollowthatofthefreestreamforpotentialflowaroundacylinder,providedthisbehaviorwouldnotcontradictsomebasicprinciple.Astheincreaseflowprogressesalongthefrontsideofthecylinder,thepressurewoulddecreaseandthenincreasealongthebacksideofthecylinder,resultinginanincreaseinfree-streamvelocityonthefrontsideofthecylinderandadecreaseonthebackside.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology41ThedetailedbehavioroftheheattransferfromaheatedcylindertoairaresummarizedinFigure6-11Thechangeofheat-transfercoefficientthroughcircularCylindersChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology42AtthelowerRenumbers,aminimumpointintheheat-transfercoefficientoccursatapproximatelythepointofseparation.Thereisasubsequentincreaseintheheat-transfercoefficientontherearsideofthecylinder,resultingfromtheturbulenteddymotionintheseparatedflow.AthigherRenumbers,
twominimumpointsareobservedChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology43Becauseofthecomplicatednatureoftheflow-separation,itisnotpossibletocalculateanalyticallytheaveragecoefficientsincrossflow.KnudsenandKatzsuggestedthatthecorrelationbeextendedtoliquidsbyinclusionofTheresultingcorrelationforaverageheat-transfercoefficientsincrossflowovercircularcylindersisTherelationshipofFlowAcrossCylinders[6-17]Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology44TheconstantCandnaretabulatedintheTable6-2ReCn0.4~40.9890.3304~400.9110.38540~40000.6830.4664000~400000.1930.61840000~4000000.02660.805℃,℃
BulktemperatureChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology45StillamorecomprehensiverelationisgivenbyChurchillandBernsteinwhichisapplicableoverthecompleterangeofavailabledata.ForBulktemperatureChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology46NoncircularCylindersEquation[6-17]isemployedinordertoobtainanempiricalcorrelationforgases,andtheconstantsforusewiththisequationaresummarizedinTable6-3.ThedatauponwhichTable6-3isbasedwereforgaseswithPr~0.7andweremodifiedbysame1.11factoremployedfortheinformationpresentedinTable6-2Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology47Table6-3constantsforheattransferfromnoncircularcylindersforusewithEquation(6-17)FlatSquareRegularHexagonChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology48SpheresAsingleEquationforgasesandliquidsflowingpastspheresAtfree-streamtemperatureChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology49ExampleAirat1atmand35℃flowsacrossa5.0-cm-diametercylinderatavelocityof50m/s.Thecylindersurfaceismaintainedatatemperatureof150℃.CalculatetheheatlossperunitlengthofthecylinderChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology50SolutionWefirstdeterminetheRenumberandthenfindtheapplicableconstantsfromTable6-2forusewithEquation(6-17).Thepropertiesofairareevaluatedatthefilmlengthofcylinder.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology51FromTable6-2,wehaveChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology526-4FlowAcrossTubeBanksDifferentArrangementofBanksUsually,therearetwokindsofarrangementofbanks,theyareInline&StaggeredFigure6-14In-lineStaggeredChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology53ForStaggeredtubebanks,theyhavebetterheat-transferperformance,buthardtocleanandhavemoreresistanceloss.[6-17]Onthebasisofacorrelationoftheresultsofvariousinvestigators,GrimsonwasabletorepresentdatainformofEquation6-17Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology54NumberoftheRows>10TheRenumberisbasedonthemaximumvelocityoccurringinthetubebank,thatis,thevelocitythroughtheminimum-flowarea.ThevalueofCandnarelistedinthefollowingtableChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology55In-lineStaggeredChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology56ZhukauskassuggestedagroupofformulawhichcouldbeusedforawiderangeofPrnumbersThebulktemperatureTheRenumbersarebasedonOutsidediameterofthetubeandonthevelocitythroughtheminimum-flowarea.RangeofPrnumberChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology57Fornumberoftubebanks<16rows,hesuggestedaratioεEquationsforheat-transferintubebanksof16rowsormore(IN-LINEarrangement)EquationsRangeofRenumberChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology58Equationsforheat-transferintubebanksof16rowsormore(Staggeredarrangement)Raitofortubebanks<16rowsEquationsRangeofReNumberNumberofRowsIn-lineStaggeredChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology596-5Liquid-MetalHeatTransferLet’sfirstconsiderthesimpleflatplatewithaliquidmetalflowingacrossit.ThePrandtlnumberforliquidmetalsisverylow,oftheorderof0.01,sothatthethermal–boundary-layerthicknessshouldbesubstantiallylargerthanthehydrodynamic-boundarylayerthickness.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology60ThissituationresultsfromthehighvaluesofthermalconductivityforconductivityforliquidmetalsandisdepictedinFigure6-15.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology61Sincetheratioofissmall,thevelocityprofilehasaverybluntshapeovermostofthethermalboundarylayer.Asafirstapproximation,then,wemightassumeaslug-flowmodelforcalculationoftheheattransfer;thatis,wetakeThroughoutthethermalboundarylayerforpurposesofcomputingtheenergy-transporttermintheintegralenergyequationChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology62Theconditionsonthetemperatureprofilearethesameasthoseinsection5-6,sothatweusethecubicparabolaasbefore:Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology63InsertingEquationsgivesThatmaybeintegratedtogiveChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology64ThesolutiontothisdifferentialequationsisForaplateheatedoveritsentirelength.Theheat-transfercoefficientmaybeexpressedbyChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology65ItmaybeputindimensionlessformasUsingEquation(5-21)forthehydrodynamic-boundary-layerthickness,Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology66WemaycomputetheratioUsingPr~0.01,weobtainItisthereasonableagreementwithourslug-flowmodel.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology67Itisimportanttonotethattheheat-transferisdependentonthePecletnumber.Empiricalcorrelationsareusuallyexpressedintermsofparameter,fourofwhichwepresentbelow.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology68ConditionsInFullydevelopedturbulentflowofliquidmetalsInsmoothtubesWithuniformheatfluxatwallPropertiesareevaluatedatbulktemperatureValidforChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology69ConditionsIntubeswithconstantwalltemperatureAllpropertiesareevaluatedatbulktemperatureConditionsConstant-heat-fluxconditionValidforChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology70TheheattransferfromaspheretoliquidsodiumForcedconvectionValidforConditionsChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology716-5SummaryEstablishthegeometryofthesituationMakeapreliminarydeterminationofappropriatefluidpropertiesEstablishtheflowregimebycalculatingtheReynoldsorPecletnumberSelectanequationthatfitsthegeometryandflowregimeandreevaluateproperties,ifnecessary,inaccordancewithstipulationsandtheequation.Processtocalculatethevalueofheat-transferrateChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnologyEmpiricalandPracticalRelationsforForced-ConvectionHeatTransfer
72Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology736-1Introduction
ThediscussionandanalysesofChapter5haveshownhowforced-convectionheattransfermaybecalculatedforseveralcasesofpracticalinterest;however,theproblemsconsideredwerethosethatcouldsolvedinananalyticalfashion.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology74But,itisnotalwayspossibletoobtainanalyticalsolutionstoconvectionproblems,andtheindividualisforcedtoresorttoexperimentalmethodstoobtaindesigninformation,aswellastosecurethemoreelusivedatethatincreasethephysicalunderstandingoftheprocess.Whatwehavetodo:Generalizetheresultsofone’sexperimentsinformofsomeempiricalcorrelationChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology75DifficultiesWhichvariablesshouldwemeasure?Whatfunctionalformshouldthedatabeorganizedinto?It’shardandexpensivetodotheexperiments,so,howmanyexperimentsshouldwedo?Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology76SimilarityConsiderationsPurpose:todoresearchontherelationshipbetweensimilarphysicalphenomena.Forsimilarphysicalphenomena:atcorrespondingtimewithcorrespondinglocationonthephysicalquantityrelatedwiththephenomenoncorrespondenceproportional.Forsametypeofphenomena:Phenomenondescribedbydifferentialequationswiththesameformandcontent.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology77CharacteristicsforphysicalphenomenasimilarityThesamecharacteristicnumbersareequalThereissomewhatrelationshipbetweendifferentcharacteristics.ForexampleChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology78TheconditionsforphysicalphenomenasimilaritySameidentifiedcharacteristicnumbersareequalIt’ssimilarforMonodromyconditions,whichincludesinitialconditions,boundaryconditionsandGeometricconditionsChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology79HowtogetdimensionlessgroupsSimilarityConsiderations:Toestablishthecolumnproportioncoefficientbetweenthetwophenomena,relationshipbetweentheexportofthesesimilaritycoefficientandobtainadimensionlessquantitybasedonKnownmathematicaldescriptionofthephysicalphenomena.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology80Phenomenon1:Phenomenon2:mathematicaldescriptionChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology81EstablishsimilarmultiplesRelationshipbetweenthemChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology82BerkeleynumberToobtaindimensionlessgroups
Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology83DimensionalAnalysisIndimensionalanalysis,dimensionalgroupssuchastheReynoldsandPrandtlnumbersarederivedfrompurelydimensionalandfunctionalconsiderations.FundamentalBasisTheoremof,Aconsistentdimensionlessequationshowingtherelationshipbetweenthenphysicalquantitiescouldbetransferredtoarelationshipwhichcontains(n-r)independentdimensionlessgroups.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology84AdvantagesofdimensionlessanalysisSimpleWecanstillobtaindimensionlessgroupswithoutknowingtheDifferentialEquationsFundamentalquantityintheSIUnitsLength[m],MASS[kg],time[s],ELECTRICCURRENT[A],thermodynamictemperature[K],amountofsubstance[mol],luminousintensity[cd]Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology85NowwecomebacktothedifficultiesWhichvariablesshouldwemeasure?
OnlyvariablesthatarecontainedincharacteristicnumbersWhatfunctionalformshouldthedatabeorganizedinto?
ArrangethedataaccordingtotherelationshipbetweenthecharacteristicnumbersIt’shardandexpensivetodotheexperiments,so,howmanyexperimentsshouldwedo?
ModularExperimentsundertheguidanceofthesimilarconsiderationChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology86Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology876-2EmpiricalRelationsForPipeAndTubeFlowCasesofUndevelopedFlowThecasesofundevelopedlaminarflowsystemswherethefluidpropertiesvarywidelywithtemperature,andturbulent-flowsystemsareconsiderablymorecomplicatedbutareofveryimportantpracticalinterestinheatexchangersandassociatedheat-transferequipment.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology88Fordesignandengineeringpurposes,empiricalcorrelationsareusuallyofgreatestpracticalutility.Forlaminarflow,thelengthoftheundevelopedpartundevelopeddeveloped(Averagefrom0tox)Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology89Forturbulentflow,thelengthoftheundevelopedpartundevelopeddeveloped(Averagefrom0tox)Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology90FurtherconsiderationtoBulktemperatureChapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology91FortubeinFigure6-1thetotalenergyaddedcanbeexpressedintermsofbulk-temperaturebyIndifferentialequation,TheTwandTbherearethewallandbulktemperatureattheparticularxlocation.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology92Thetotalheattransfercanalsobeexpressedas[6-3]whereAisthetotalsurfaceareaforheattransfer.BecausebothTwandTbcanvaryalongthelengthofthetube,asuitableaveragingprocessmustbeadoptedforusewithEquation(6-3).Inchapter10we’lldiscussdifferentmethodsfortakingproperaccountoftemperaturevariationsinheatexchangers.Chapter6CollegeofNuclear
Chapter6CollegeofNuclearScienceandTechnology93AtraditionexpressionforcalculationofheattransferinfullydevelopedturbulentflowinsmoothtubesForheatingofthefluidForcoolingofthefluidChapter6CollegeofNuclear
Cha
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑材料進(jìn)口物流合同樣本
- 礦產(chǎn)開采用地中介服務(wù)合同
- 二零二五年度包裝機(jī)械遠(yuǎn)程監(jiān)控與維修服務(wù)合同
- 家禽養(yǎng)殖合同禽類采購合同
- 房屋買賣合同詳情
- 農(nóng)業(yè)工程綜合實(shí)施方案
- 軟件技術(shù)服務(wù)合同書
- 國際酒店服務(wù)管理手冊
- 工程監(jiān)理規(guī)范實(shí)務(wù)手冊
- 牛羊肉供貨協(xié)議書
- 人教版PEP五年級英語下冊單詞表與單詞字帖 手寫體可打印
- 如果歷史是一群喵
- 抖音房產(chǎn)直播敏感詞匯表
- 2024屆山東省青島市市北區(qū)八年級物理第二學(xué)期期末質(zhì)量檢測試題含解析
- 2022-2023年人教版九年級化學(xué)(上冊)期末試題及答案(完整)
- 中華民族共同體概論課件專家版2第二講 樹立正確的中華民族歷史觀
- 蔚來用戶運(yùn)營分析報告-數(shù)字化
- 中學(xué)生低碳生活調(diào)查報告
- 游泳池經(jīng)營合作方案
- 擘畫未來技術(shù)藍(lán)圖
- 基于情報基本理論的公安情報
評論
0/150
提交評論