2022年安徽省阜陽市十校聯(lián)考數(shù)學(xué)九年級(jí)第一學(xué)期期末經(jīng)典模擬試題含解析_第1頁
2022年安徽省阜陽市十校聯(lián)考數(shù)學(xué)九年級(jí)第一學(xué)期期末經(jīng)典模擬試題含解析_第2頁
2022年安徽省阜陽市十校聯(lián)考數(shù)學(xué)九年級(jí)第一學(xué)期期末經(jīng)典模擬試題含解析_第3頁
2022年安徽省阜陽市十校聯(lián)考數(shù)學(xué)九年級(jí)第一學(xué)期期末經(jīng)典模擬試題含解析_第4頁
2022年安徽省阜陽市十校聯(lián)考數(shù)學(xué)九年級(jí)第一學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知關(guān)于的一元二次方程的兩個(gè)根分別是,,且滿足,則的值是()A.0 B. C.0或 D.或02.如圖,AB是半圓O的直徑,弦AD、BC相交于點(diǎn)P,若∠DPB=α,那么等于()A.tanα B.sina C.cosα D.3.由于受豬瘟的影響,今年9月份豬肉的價(jià)格兩次大幅上漲,瘦肉價(jià)格由原來每千克23元,連續(xù)兩次上漲后,售價(jià)上升到每千克40元,則下列方程中正確的是()A. B.C. D.4.如圖,AB是⊙O的直徑,CD是⊙O的弦,如果∠ACD=35°,那么∠BAD等于()A.35° B.45° C.55° D.65°5.二次函數(shù)y=﹣x2+2x﹣4,當(dāng)﹣1<x<2時(shí),y的取值范圍是()A.﹣7<y<﹣4 B.﹣7<y≤﹣3 C.﹣7≤y<﹣3 D.﹣4<y≤﹣36.將二次函數(shù)化成的形式為()A. B.C. D.7.如圖,在平面直角坐標(biāo)系中,M、N、C三點(diǎn)的坐標(biāo)分別為(,1),(3,1),(3,0),點(diǎn)A為線段MN上的一個(gè)動(dòng)點(diǎn),連接AC,過點(diǎn)A作AB⊥AC交y軸于點(diǎn)B,當(dāng)點(diǎn)A從M運(yùn)動(dòng)到N時(shí),點(diǎn)B隨之運(yùn)動(dòng),設(shè)點(diǎn)B的坐標(biāo)為(0,b),則b的取值范圍是()A.≤b≤1 B.≤b≤1 C.≤b≤ D.≤b≤18.如圖,點(diǎn),,均在⊙上,當(dāng)時(shí),的度數(shù)是()A. B. C. D.9.圖1是一個(gè)地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開時(shí),雙翼邊緣的端點(diǎn)A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時(shí),可以通過閘機(jī)的物體的最大寬度為()A.(54+10)cm B.(54+10)cm C.64cm D.54cm10.若一個(gè)圓錐的底面積為,圓錐的高為,則該圓錐的側(cè)面展開圖中圓心角的度數(shù)為()A. B. C. D.二、填空題(每小題3分,共24分)11.反比例函數(shù)y=的圖象經(jīng)過(1,y1),(3,y1)兩點(diǎn),則y1_____y1.(填“>”,“=”或“<”)12.如圖,AB是半圓O的直徑,AB=10,過點(diǎn)A的直線交半圓于點(diǎn)C,且sin∠CAB=,連結(jié)BC,點(diǎn)D為BC的中點(diǎn).已知點(diǎn)E在射線AC上,△CDE與△ACB相似,則線段AE的長(zhǎng)為________;13.已知⊙O的半徑為,圓心O到直線L的距離為,則直線L與⊙O的位置關(guān)系是___________.14.下面是“經(jīng)過已知直線外一點(diǎn)作這條直線的垂線”的尺規(guī)作圖過程.已知:直線和直線外一點(diǎn).求作:直線的垂線,使它經(jīng)過.作法:如圖2.(1)在直線上取一點(diǎn),連接;(2)分別以點(diǎn)和點(diǎn)為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于,兩點(diǎn),連接交于點(diǎn);(3)以點(diǎn)為圓心,為半徑作圓,交直線于點(diǎn)(異于點(diǎn)),作直線.所以直線就是所求作的垂線.請(qǐng)你寫出上述作垂線的依據(jù):______.15.一元二次方程(x﹣1)2=1的解是_____.16.如圖,Rt△ABC中,∠C=90°,AC=30cm,BC=40cm,現(xiàn)利用該三角形裁剪一個(gè)最大的圓,則該圓半徑是_____cm.17.如圖,在正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,E是BC的中點(diǎn),DE交AC于點(diǎn)F,則tan∠BDE=______.18.一元二次方程的解為________.三、解答題(共66分)19.(10分)(1)解方程(2)計(jì)算:20.(6分)如圖,在平面直角坐標(biāo)系xOy中,直線和拋物線W交于A,B兩點(diǎn),其中點(diǎn)A是拋物線W的頂點(diǎn).當(dāng)點(diǎn)A在直線上運(yùn)動(dòng)時(shí),拋物線W隨點(diǎn)A作平移運(yùn)動(dòng).在拋物線平移的過程中,線段AB的長(zhǎng)度保持不變.應(yīng)用上面的結(jié)論,解決下列問題:在平面直角坐標(biāo)系xOy中,已知直線.點(diǎn)A是直線上的一個(gè)動(dòng)點(diǎn),且點(diǎn)A的橫坐標(biāo)為.以A為頂點(diǎn)的拋物線與直線的另一個(gè)交點(diǎn)為點(diǎn)B.(1)當(dāng)時(shí),求拋物線的解析式和AB的長(zhǎng);(2)當(dāng)點(diǎn)B到直線OA的距離達(dá)到最大時(shí),直接寫出此時(shí)點(diǎn)A的坐標(biāo);(3)過點(diǎn)A作垂直于軸的直線交直線于點(diǎn)C.以C為頂點(diǎn)的拋物線與直線的另一個(gè)交點(diǎn)為點(diǎn)D.①當(dāng)AC⊥BD時(shí),求的值;②若以A,B,C,D為頂點(diǎn)構(gòu)成的圖形是凸四邊形(各個(gè)內(nèi)角度數(shù)都小于180°)時(shí),直接寫出滿足條件的的取值范圍.21.(6分)有1張看上去無差別的卡片,上面分別寫著1、2、1.隨機(jī)抽取1張后,放回并混在一起,再隨機(jī)抽取1張.(I)請(qǐng)你用畫樹狀圖法(或列表法)列出兩次抽取卡片出現(xiàn)的所有可能結(jié)果;(Ⅱ)求兩次抽取的卡片上數(shù)字之和為偶數(shù)的概率.22.(8分)定義:如果一個(gè)三角形中有兩個(gè)內(nèi)角α,β滿足α+2β=90°,那我們稱這個(gè)三角形為“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,則∠A=度;(2)如圖1,在Rt△ABC中,∠BAC=90°,AB=3,AC=1.若BD是∠ABC的平分線,①求證:△BDC是“近直角三角形”;②在邊AC上是否存在點(diǎn)E(異于點(diǎn)D),使得△BCE也是“近直角三角形”?若存在,請(qǐng)求出CE的長(zhǎng);若不存在,請(qǐng)說明理由.(3)如圖2,在Rt△ABC中,∠BAC=90°,點(diǎn)D為AC邊上一點(diǎn),以BD為直徑的圓交BC于點(diǎn)E,連結(jié)AE交BD于點(diǎn)F,若△BCD為“近直角三角形”,且AB=5,AF=3,求tan∠C的值.23.(8分)計(jì)算:(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0;(2)cos245°+sin60°tan45°+sin1.24.(8分)如圖,拋物線與直線交于A、B兩點(diǎn).點(diǎn)A的橫坐標(biāo)為-3,點(diǎn)B在y軸上,點(diǎn)P是y軸左側(cè)拋物線上的一動(dòng)點(diǎn),橫坐標(biāo)為m,過點(diǎn)P作PC⊥x軸于C,交直線AB于D.(1)求拋物線的解析式;(2)當(dāng)m為何值時(shí),;(3)是否存在點(diǎn)P,使△PAD是直角三角形,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.25.(10分)如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個(gè)電線桿,某人在河岸MN上的A處測(cè)得∠DAB=30°,然后沿河岸走了100m到達(dá)B處,測(cè)得∠CBF=70°,求河流的寬度(結(jié)果精確到個(gè)位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)26.(10分)如圖,銳角三角形中,,分別是,邊上的高,垂足為,.(1)證明:.(2)若將,連接起來,則與能相似嗎?說說你的理由.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】首先根據(jù)一元二次方程根與系數(shù)關(guān)系得到兩根之和和兩根之積,然后把x12+x22轉(zhuǎn)換為(x1+x2)2-2x1x2,然后利用前面的等式即可得到關(guān)于m的方程,解方程即可求出結(jié)果.【詳解】解:∵x1、x2是一元二次方程x2-mx+2m-1=0的兩個(gè)實(shí)數(shù)根,

∴x1+x2=-(2m+1),x1x2=m-1,

∵x12+x22=(x1+x2)2-2x1x2=3,

∴[-(2m+1)]2-2(m-1)=3,

解得:m1=0,m2=,

又∵方程x2-mx+2m-1=0有兩個(gè)實(shí)數(shù)根,

∴△=(2m+1)2-4(m-1)≥0,

∴當(dāng)m=0時(shí),△=5>0,當(dāng)m=時(shí),△=6>0

∴m1=0,m2=都符合題意.故選:C.【點(diǎn)睛】本題考查一元二次方程根與系數(shù)的關(guān)系、完全平方公式,解題關(guān)鍵是熟練掌握一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程兩個(gè)為x1,x2,則x1+x2=-,x1?x2=.2、C【分析】連接BD得到∠ADB是直角,再利用兩三角形相似對(duì)應(yīng)邊成比例即可求解.【詳解】連接BD,由AB是直徑得,∠ADB=.∵∠C=∠A,∠CPD=∠APB,∴△CPD∽△APB,∴CD:AB=PD:PB=cosα.故選C.3、A【分析】根據(jù)增長(zhǎng)率a%求出第一次提價(jià)后的售價(jià),然后再求第二次提價(jià)后的售價(jià),即可得出答案.【詳解】根據(jù)題意可得:23(1+a%)2=40,故答案選擇A.【點(diǎn)睛】本題考查的是一元二次方程在實(shí)際生活中的應(yīng)用,比較簡(jiǎn)單,記住公式“增長(zhǎng)后的量=增長(zhǎng)前的量×(1+增長(zhǎng)率)”.4、C【分析】根據(jù)題意可知、,通過與互余即可求出的值.【詳解】解:∵∴∵是的直徑∴∴故選:C【點(diǎn)睛】本題考查了圓周角定理,同弧所對(duì)的圓周角相等、并且等于它所對(duì)的圓心角的一半,也考查了直徑所對(duì)的圓周角為90度.5、B【分析】先求出二次函數(shù)的對(duì)稱軸,再根據(jù)二次函數(shù)的增減性求出最小值和最大值即可.【詳解】解:∵y=﹣x2+2x﹣4,=﹣(x2﹣2x+4)=﹣(x﹣1)2﹣1,∴二次函數(shù)的對(duì)稱軸為直線x=1,∴﹣1<x<2時(shí),x=1取得最大值為﹣1,x=﹣1時(shí)取得最小值為﹣(﹣1)2+2×(﹣1)﹣4=﹣7,∴y的取值范圍是﹣7<y≤﹣1.故選:B.【點(diǎn)睛】本題考查了二次函數(shù)與不等式,主要利用了二次函數(shù)的增減性和對(duì)稱性,確定出對(duì)稱軸從而判斷出取得最大值和最小值的情況是解題的關(guān)鍵.6、C【分析】利用配方法即可將二次函數(shù)轉(zhuǎn)化為頂點(diǎn)式.【詳解】故選:C.【點(diǎn)睛】本題主要考查二次函數(shù)的頂點(diǎn)式,掌握配方法是解題的關(guān)鍵.7、B【分析】延長(zhǎng)NM交y軸于P點(diǎn),則MN⊥y軸.連接CN.證明△PAB∽△NCA,得出,設(shè)PA=x,則NA=PN﹣PA=3﹣x,設(shè)PB=y(tǒng),代入整理得到y(tǒng)=3x﹣x2=﹣(x﹣)2+,根據(jù)二次函數(shù)的性質(zhì)以及≤x≤3,求出y的最大與最小值,進(jìn)而求出b的取值范圍.【詳解】解:如圖,延長(zhǎng)NM交y軸于P點(diǎn),則MN⊥y軸.連接CN.在△PAB與△NCA中,,∴△PAB∽△NCA,∴,設(shè)PA=x,則NA=PN﹣PA=3﹣x,設(shè)PB=y(tǒng),∴,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=時(shí),y有最大值,此時(shí)b=1﹣=﹣,x=3時(shí),y有最小值0,此時(shí)b=1,∴b的取值范圍是﹣≤b≤1.故選:B.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),得出y與x之間的函數(shù)解析式是解題的關(guān)鍵.8、A【分析】先利用等腰三角形的性質(zhì)和三角形內(nèi)角和計(jì)算出的度數(shù),然后根據(jù)圓周角定理可得到的度數(shù).【詳解】,,,.故選A.【點(diǎn)睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.9、C【分析】過A作AE⊥CP于E,過B作BF⊥DQ于F,則可得AE和BF的長(zhǎng),依據(jù)端點(diǎn)A與B之間的距離為10cm,即可得到可以通過閘機(jī)的物體的最大寬度.【詳解】如圖所示,過A作AE⊥CP于E,過B作BF⊥DQ于F,則Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵點(diǎn)A與B之間的距離為10cm,∴通過閘機(jī)的物體的最大寬度為27+10+27=64(cm),故選C.【點(diǎn)睛】本題主要考查了特殊角的三角函數(shù)值,特殊角的三角函數(shù)值應(yīng)用廣泛,一是它可以當(dāng)作數(shù)進(jìn)行運(yùn)算,二是具有三角函數(shù)的特點(diǎn),在解直角三角形中應(yīng)用較多.10、C【分析】根據(jù)圓錐底面積求得圓錐的底面半徑,然后利用勾股定理求得母線長(zhǎng),根據(jù)圓錐的母線長(zhǎng)等于展開圖扇形的半徑,求出圓錐底面圓的周長(zhǎng),也即是展開圖扇形的弧長(zhǎng),然后根據(jù)弧長(zhǎng)公式可求出圓心角的度數(shù).【詳解】解:∵圓錐的底面積為4πcm2,

∴圓錐的底面半徑為2cm,

∴底面周長(zhǎng)為4π,

圓錐的高為4cm,

∴由勾股定理得圓錐的母線長(zhǎng)為6cm,

設(shè)側(cè)面展開圖的圓心角是n°,

根據(jù)題意得:=4π,

解得:n=1.

故選:C.【點(diǎn)睛】本題考查了圓錐的計(jì)算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長(zhǎng)是扇形的半徑,圓錐的底面圓周長(zhǎng)是扇形的弧長(zhǎng).二、填空題(每小題3分,共24分)11、>【分析】根據(jù)反比例函數(shù)的增減性,結(jié)合橫坐標(biāo)的大小關(guān)系,即可得到答案.【詳解】解:∵反比例函數(shù),∴圖象在一、三象限,y隨著x的增大而減小∵∴故答案是:【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,采用的是利用反比例函數(shù)的增減性,結(jié)合橫坐標(biāo)的大小關(guān)系進(jìn)行的解答.12、3或9或或【分析】先根據(jù)圓周角定理及正弦定理得到BC=8,再根據(jù)勾股定理求出AC=6,再分情況討論,從而求出AE.【詳解】∵AB是半圓O的直徑,∴∠ACB=90,∵sin∠CAB=,∴,∵AB=10,∴BC=8,∴,∵點(diǎn)D為BC的中點(diǎn),∴CD=4.∵∠ACB=∠DCE=90,①當(dāng)∠CDE1=∠ABC時(shí),△ACB∽△E1CD,如圖∴,即,∴CE1=3,∵點(diǎn)E1在射線AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②當(dāng)∠CE3D=∠ABC時(shí),△ABC∽△DE3C,如圖∴,即,∴CE3=,∴AE3=6+=,同理:AE4=6-=.故答案為:3或9或或.【點(diǎn)睛】此題考查相似三角形的判定及性質(zhì),當(dāng)三角形的相似關(guān)系不是用相似符號(hào)連接時(shí),一定要分情況來確定兩個(gè)三角形的對(duì)應(yīng)關(guān)系,這是解此題容易錯(cuò)誤的地方.13、相交【分析】先根據(jù)題意判斷出直線與圓的位置關(guān)系即可得出結(jié)論.【詳解】∵⊙O的半徑為6cm,圓心O到直線l的距離為5cm,6cm>5cm,∴直線l與⊙O相交,故答案為:相交.【點(diǎn)睛】本題考查的是直線與圓的位置關(guān)系,熟知設(shè)⊙O的半徑為r,圓心O到直線l的距離為d,當(dāng)d<r時(shí),直線與圓相交是解答此題的關(guān)鍵.14、直徑所對(duì)的圓周角是直角【分析】由題意知點(diǎn)E在以PA為直徑的圓上,根據(jù)“直徑所對(duì)的圓周角是直角”可得∠PEA=90°,即PE⊥直線a.【詳解】由作圖知,點(diǎn)E在以PA為直徑的圓上,所以∠PEA=90°,則PE⊥直線a,所以該尺規(guī)作圖的依據(jù)是:直徑所對(duì)的圓周角是直角,故答案為:直徑所對(duì)的圓周角是直角.【點(diǎn)睛】本題主要考查作圖?尺規(guī)作圖,解題的關(guān)鍵是掌握線段中垂線的尺規(guī)作圖及其性質(zhì)和直徑所對(duì)的圓周角是直角.15、x=2或0【分析】根據(jù)一元二次方程的解法即可求出答案.【詳解】解:∵(x﹣1)2=1,∴x﹣1=±1,∴x=2或0故答案為:x=2或0【點(diǎn)睛】本題主要考查解一元二次方程的方法,形如x2=p或(nx+m)2=p(p?0)的一元二次方程可采用直接開平方的方法解一元二次方程.16、1.【分析】根據(jù)勾股定理求出的斜邊AB,再由等面積法,即可求得內(nèi)切圓的半徑.【詳解】由題意得:該三角形裁剪的最大的圓是Rt△ABC的內(nèi)切圓,設(shè)AC邊上的切點(diǎn)為D,連接OA、OB、OC,OD,∵∠ACB=90°,AC=30cm,BC=40cm,∴AB==50cm,設(shè)半徑OD=rcm,∴S△ACB==,∴30×40=30r+40r+50r,∴r=1,則該圓半徑是1cm.故答案為:1.【點(diǎn)睛】本題考查內(nèi)切圓、勾股定理和等面積法的問題,屬中檔題.17、【分析】設(shè)AD=DC=a,根據(jù)勾股定理求出AC,易證△AFD∽△CFE,根據(jù)相似三角形的性質(zhì),可得:=2,進(jìn)而求得CF,OF的長(zhǎng),由銳角的正切三角函數(shù)定義,即可求解.【詳解】∵四邊形ABCD是正方形,∴∠ADC=90°,AC⊥BD,設(shè)AD=DC=a,∴AC=a,∴OA=OC=OD=a,∵E是BC的中點(diǎn),∴CE=BC=a,∵AD∥BC,∴△AFD∽△CFE,∴=2,∴CF=AC=a,∴OF=OC﹣CF=a,∴tan∠BDE===,故答案為:.【點(diǎn)睛】本題主要考查相似三角形的判定和性質(zhì)定理以及正切三角函數(shù)的定義,根據(jù)題意,設(shè)AD=DC=a,表示出OF,OD的長(zhǎng)度,是解題的關(guān)鍵.18、,【解析】利用“十字相乘法”對(duì)等式的左邊進(jìn)行因式分解.【詳解】由原方程,得,則或,解得,.故答案為:,.【點(diǎn)睛】本題考查了解一元二次方程-因式分解法.因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個(gè)一次因式的積的形式,那么這兩個(gè)因式的值就都有可能為0,這就能得到兩個(gè)一元一次方程的解,這樣也就把原方程進(jìn)行了降次,把解一元二次方程轉(zhuǎn)化為解一元一次方程的問題了(數(shù)學(xué)轉(zhuǎn)化思想).三、解答題(共66分)19、(1),;(2)【分析】(1)利用配方法解一元二次方程即可得出答案;(2)先將sin45°和tan60°的值代入,再計(jì)算即可得出答案.【詳解】解:(1)方程整理得:,配方得:,即,開方得:,解得:,;(2)原式.【點(diǎn)睛】本題考查的是解一元二次方程和三角函數(shù)值,比較簡(jiǎn)單,需要牢記特殊三角函數(shù)值.20、(1);(2);(3)①;②的取值范圍是或.【分析】(1)根據(jù)t=3時(shí),A的坐標(biāo)可以求得是(3,-2),利用待定系數(shù)法即可求得拋物線的解析式,則B的坐標(biāo)可以求得;

(2)△OAB的面積一定,當(dāng)OA最小時(shí),B到OA的距離即△OAB中OA邊上的高最大,此時(shí)OA⊥AB,據(jù)此即可求解;

(3)①方法一:設(shè)AC,BD交于點(diǎn)E,直線l1:y=x-2,與x軸、y軸交于點(diǎn)P和Q(如圖1).由點(diǎn)D在拋物線C2:y=[x-(2t-4)]2+(t-2)上,可得=[(t-1)-(2t-4)]2+(t-2),解方程即可得到t的值;

方法二:設(shè)直線l1:y=x-2與x軸交于點(diǎn)P,過點(diǎn)A作y軸的平行線,過點(diǎn)B作x軸的平行線,交于點(diǎn)N.(如圖2),根據(jù)BD⊥AC,可得t-1=2t-,解方程即可得到t的值;

②設(shè)直線l1與l2交于點(diǎn)M.隨著點(diǎn)A從左向右運(yùn)動(dòng),從點(diǎn)D與點(diǎn)M重合,到點(diǎn)B與點(diǎn)M重合的過程中,可得滿足條件的t的取值范圍.【詳解】解:(1)∵點(diǎn)A在直線l1:y=x-2上,且點(diǎn)A的橫坐標(biāo)為3,

∴點(diǎn)A的坐標(biāo)為(3,-2),

∴拋物線C1的解析式為y=-x2-2,

∵點(diǎn)B在直線l1:y=x-2上,

設(shè)點(diǎn)B的坐標(biāo)為(x,x-2).

∵點(diǎn)B在拋物線C1:y=-x2-2上,

∴x-2=-x2-2,

解得x=3或x=-1.

∵點(diǎn)A與點(diǎn)B不重合,

∴點(diǎn)B的坐標(biāo)為(-1,-3),

∴由勾股定理得AB=.

(2)當(dāng)OA⊥AB時(shí),點(diǎn)B到直線OA的距離達(dá)到最大,則OA的解析式是y=-x,則

,解得:,

則點(diǎn)A的坐標(biāo)為(1,-1).(3)①方法一:設(shè),交于點(diǎn),直線,與軸、軸交于點(diǎn)和(如圖1).則點(diǎn)和點(diǎn)的坐標(biāo)分別為,.∴.∵.∵軸,∴軸.∴.∵,,∴.∵點(diǎn)在直線上,且點(diǎn)的橫坐標(biāo)為,∴點(diǎn)的坐標(biāo)為.∴點(diǎn)的坐標(biāo)為.∵軸,∴點(diǎn)的縱坐標(biāo)為.∵點(diǎn)在直線上,∴點(diǎn)的坐標(biāo)為.∴拋物線的解析式為.∵,∴點(diǎn)的橫坐標(biāo)為,∵點(diǎn)在直線上,∴點(diǎn)的坐標(biāo)為.∵點(diǎn)在拋物線上,∴.解得或.∵當(dāng)時(shí),點(diǎn)與點(diǎn)重合,∴方法二:設(shè)直線l1:y=x-2與x軸交于點(diǎn)P,過點(diǎn)A作y軸的平行線,過點(diǎn)B作x軸的平行線,交于點(diǎn)N.(如圖2)

則∠ANB=93°,∠ABN=∠OPB.

在△ABN中,BN=ABcos∠ABN,AN=ABsin∠ABN.

∵在拋物線C1隨頂點(diǎn)A平移的過程中,

AB的長(zhǎng)度不變,∠ABN的大小不變,

∴BN和AN的長(zhǎng)度也不變,即點(diǎn)A與點(diǎn)B的橫坐標(biāo)的差以及縱坐標(biāo)的差都保持不變.

同理,點(diǎn)C與點(diǎn)D的橫坐標(biāo)的差以及縱坐標(biāo)的差也保持不變.

由(1)知當(dāng)點(diǎn)A的坐標(biāo)為(3,-2)時(shí),點(diǎn)B的坐標(biāo)為(-1,-3),

∴當(dāng)點(diǎn)A的坐標(biāo)為(t,t-2)時(shí),點(diǎn)B的坐標(biāo)為(t-1,t-3).

∵AC∥x軸,

∴點(diǎn)C的縱坐標(biāo)為t-2.

∵點(diǎn)C在直線l2:y=x上,

∴點(diǎn)C的坐標(biāo)為(2t-4,t-2).

令t=2,則點(diǎn)C的坐標(biāo)為(3,3).

∴拋物線C2的解析式為y=x2.

∵點(diǎn)D在直線l2:y=x上,

∴設(shè)點(diǎn)D的坐標(biāo)為(x,).

∵點(diǎn)D在拋物線C2:y=x2上,

∴=x2.

解得x=或x=3.

∵點(diǎn)C與點(diǎn)D不重合,

∴點(diǎn)D的坐標(biāo)為(,).

∴當(dāng)點(diǎn)C的坐標(biāo)為(3,3)時(shí),點(diǎn)D的坐標(biāo)為(,).

∴當(dāng)點(diǎn)C的坐標(biāo)為(2t-4,t-2)時(shí),點(diǎn)D的坐標(biāo)為(2t?,t?).

∵BD⊥AC,

∴t?1=2t?.

∴t=.

②t的取值范圍是t<或t>4.

設(shè)直線l1與l2交于點(diǎn)M.隨著點(diǎn)A從左向右運(yùn)動(dòng),從點(diǎn)D與點(diǎn)M重合,到點(diǎn)B與點(diǎn)M重合的過程中,以A,B,C,D為頂點(diǎn)構(gòu)成的圖形不是凸四邊形.

【點(diǎn)睛】本題考查了二次函數(shù)綜合題,掌握待定系數(shù)法求得函數(shù)的解析式,點(diǎn)到直線的距離,平行于坐標(biāo)軸的點(diǎn)的特點(diǎn),方程思想的運(yùn)用是解題的關(guān)鍵.21、(I)9;(Ⅱ).【解析】(Ⅰ)直接用樹狀圖或列表法等方法列出各種可能出現(xiàn)的結(jié)果;(Ⅱ)由(Ⅰ)可知所有9種等可能的結(jié)果數(shù),再找出兩次抽到的卡片上的數(shù)字之和為偶數(shù)的有5種.然后根據(jù)概率公式求解即可.【詳解】解:(Ⅰ)畫樹狀圖得:共有9種等可能的結(jié)果數(shù);(Ⅱ)由(Ⅰ)可知:共有9種等可能的結(jié)果數(shù),兩次抽取的卡片上數(shù)字之和為偶數(shù)的有5種,所以兩次抽到的卡片上的數(shù)字之和為偶數(shù)的概率為:.【點(diǎn)睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.22、(1)20;(2)①見解析;②存在,CE=;(3)tan∠C的值為或.【分析】(1)∠B不可能是α或β,當(dāng)∠A=α?xí)r,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°;(2)①如圖1,設(shè)∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,即可求解.(3)①如圖2所示,當(dāng)∠ABD=∠DBC=β時(shí),設(shè)BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=,即可求解;②如圖3所示,當(dāng)∠ABD=∠C=β時(shí),AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點(diǎn)H是BE的中點(diǎn),則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=,即可求解.【詳解】解:(1)∠B不可能是α或β,當(dāng)∠A=α?xí)r,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°,故答案為20;(2)①如圖1,設(shè)∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在邊AC上是否存在點(diǎn)E(異于點(diǎn)D),使得△BCE是“近直角三角形”,AB=3,AC=1,則BC=5,則∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,則CE=1﹣=;(3)①如圖2所示,當(dāng)∠ABD=∠DBC=β時(shí),則AE⊥BF,則AF=FE=3,則AE=6,AB=BE=5,過點(diǎn)A作AH⊥BC于點(diǎn)H,設(shè)BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=;cos∠ABE===cos2β,則tan2β=,則tanα=;②如圖3所示,當(dāng)∠ABD=∠C=β時(shí),過點(diǎn)A作AH⊥BE交BE于點(diǎn)H,交BD于點(diǎn)G,則點(diǎn)G是圓的圓心(BE的中垂線與直徑的交點(diǎn)),∵∠AEB=∠DAE+∠C=α+β=∠ABC,故AE=AB=5,則EF=AE﹣AF=5﹣3=2,∵DE⊥BC,AH⊥BC,∴ED∥AH,則AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點(diǎn)H是BE的中點(diǎn),則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=;在△ABD中,AB=5,BD=6k=,則cos∠ABD=cosβ===cosC,則tanC=;綜上,tan∠C的值為或.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),三角函數(shù)值等知識(shí).屬于圓的綜合題,解決本題需要我們熟練各部分的內(nèi)容,對(duì)學(xué)生的綜合能力要求較高,一定要注意將所學(xué)知識(shí)貫穿起來.23、(1)0;(2).【分析】(1)直接利用特殊角的三角函數(shù)值以及零指數(shù)冪的性質(zhì)和負(fù)指數(shù)冪的性質(zhì)分別化簡(jiǎn)得出答案;(2)直接利用特殊角的三角函數(shù)值化簡(jiǎn)得出答案.【詳解】(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0;=﹣1﹣++1=0;(2)cos245°+sin60°tan45°+sin1=()2+×1+()2=++=.【點(diǎn)睛】本題考查了實(shí)數(shù)運(yùn)算,掌握實(shí)數(shù)運(yùn)算是解題的關(guān)鍵.24、(1)y=x1+4x-1;(1)∴m=,-1,或-3時(shí)S四邊形OBDC=1SS△BPD【解析】試題分析:(1)由x=0時(shí)帶入y=x-1求出y的值求出B的坐標(biāo),當(dāng)x=-3時(shí),代入y=x-1求出y的值就可以求出A的坐標(biāo),由待定系數(shù)法就可以求出拋物線的解析式;(1)連結(jié)OP,由P點(diǎn)的橫坐標(biāo)為m可以表示出P、D的坐標(biāo),可以表示出S四邊形OBDC和1S△BPD建立方程求出其解即可.(3)如圖1,當(dāng)∠APD=90°時(shí),設(shè)出P點(diǎn)的坐標(biāo),就可以表示出D的坐標(biāo),由△APD∽△FCD就可與求出結(jié)論,如圖3,當(dāng)∠PAD=90°時(shí),作AE⊥x軸于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性質(zhì)就可以求出結(jié)論.試題解析:∵y=x-1,∴x=0時(shí),y=-1,∴B(0,-1).當(dāng)x=-3時(shí),y=-4,∴A(-3,-4).∵y=x1+bx+c與直線y=x-1交于A、B兩點(diǎn),∴∴∴拋物線的解析式為:y=x1+4x-1;(1)∵P點(diǎn)橫坐標(biāo)是m(m<0),∴P(m,m1+4m-1),D(m,m-1)如圖1①,作BE⊥PC于E,∴BE=-m.CD=1-m,O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論