




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
本文格式為Word版,下載可任意編輯——高二數(shù)學(xué)必修五知識點總結(jié)我們在學(xué)習(xí)當(dāng)中專心預(yù)習(xí)好新的課程,上課潛心聽講;不懂的實時請教老師或者同學(xué)。放學(xué)回來要專心把老師布置的作業(yè)完成,并且把課堂上學(xué)過的學(xué)識好好溫習(xí)一遍;這樣才能把學(xué)過的內(nèi)容牢牢地記在腦子里。以下是我給大家整理的(高二數(shù)學(xué))必修五學(xué)識點(總結(jié)),夢想能扶助到你!
高二數(shù)學(xué)必修五學(xué)識點總結(jié)1
1.等差數(shù)列通項公式
an=a1+(n-1)d
n=1時a1=S1
n≥2時an=Sn-Sn-1
an=kn+b(k,b為常數(shù))推導(dǎo)過程:an=dn+a1-d令d=k,a1-d=b那么得到an=kn+b
2.等差中項
由三個數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡樸的等差數(shù)列。這時,A叫做a與b的等差中項(arithmeticmean)。
有關(guān)系:A=(a+b)÷2
3.前n項和
倒序相加法推導(dǎo)前n項和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)
∴Sn=n(a1+an)÷2
等差數(shù)列的前n項和等于首末兩項的和與項數(shù)乘積的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
好玩的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差數(shù)列性質(zhì)
一、任意兩項am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項公式。
二、從等差數(shù)列的定義、通項公式,前n項和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_
三、若m,n,p,q∈N_,且m+n=p+q,那么有am+an=ap+aq
四、對任意的k∈N_,有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數(shù)列。
高二數(shù)學(xué)必修五學(xué)識點總結(jié)2
一、不等關(guān)系及不等式學(xué)識點
1.不等式的定義
在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號、、連接兩個數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.
2.對比兩個實數(shù)的大小
兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,有a-baa-b=0a-ba0,那么有a/baa/b=1a/ba
3.不等式的性質(zhì)
(1)對稱性:ab
(2)傳遞性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nN,n
(6)可開方:a0
(nN,n2).
留神:
一個技巧
作差法變形的技巧:作差法中變形是關(guān)鍵,常舉行因式分解或配方.
一種(方法)
待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代數(shù)式表示目標(biāo)式,再利用多項式相等的法那么求出參數(shù),結(jié)果利用不等式的性質(zhì)求出目標(biāo)式的范圍.
高二數(shù)學(xué)必修五學(xué)識點總結(jié)3
解三角形
1、三角形三角關(guān)系:A+B+C=180°;C=180°-(A+B);
2、三角形三邊關(guān)系:a+bc;a-b3、三角形中的根本關(guān)系:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC,A?BCA?BCA?BC?cos,cos?sin,tan?cot222222
4、正弦定理:在???C中,a、b、c分別為角?、?、C的對邊,R為???C的外abc???2R.接圓的半徑,那么有sin?sin?sinCsin
5、正弦定理的變形公式:
①化角為邊:a?2Rsin?,b?2Rsin?,c?2RsinC;abc,sin??,sinC?;2R2R2R
a?b?cabc???③a:b:c?sin?:sin?:sinC;④.sin??sin??sinCsin?sin?sinC②化邊為角:sin??6、兩類正弦定理解三角形的問題:
①已知兩角和任意一邊,求其他的兩邊及一角.
②已知兩角和其中一邊的對角,求其他邊角.(對于已知兩邊和其中一邊所對的角的題型要留神解的處境(一解、兩解、三解))
7、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.
b2?c2?a2a2?c2?b2a2?b2?c2
8、余弦定理的推論:cos??,cos??,cosC?.2bc2ac2ab(余弦定理主要解決的問題:1.已知兩邊和夾角,求其余的量。2.已知三邊求角)
9、余弦定理主要解決的問題:①已知兩邊和夾角,求其余的量。②已知三邊求角)
10、如何判斷三角形的外形:判定三角形外形時,可利用正余弦定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)校外安全教育班會:守護生命之花
- 安全教育家長會
- 復(fù)課前心理健康教育家長會
- 小學(xué)生理衛(wèi)生知識教育
- 2025年中國水系統(tǒng)除垢劑市場調(diào)查研究報告
- 2025年中國橡膠正壓風(fēng)筒市場調(diào)查研究報告
- 2025年中國易拉門市場調(diào)查研究報告
- 2025年中國數(shù)字電話機市場調(diào)查研究報告
- 2025年中國開叉釘機市場調(diào)查研究報告
- 三方聯(lián)營合同協(xié)議
- 中小學(xué)校保安服務(wù)方案(技術(shù)方案)
- 蘇教版高中數(shù)學(xué)必修第一冊第1章1.1第2課時集合的表示【授課課件】
- 2024年上海市公安機關(guān)文職輔警、公安機關(guān)勤務(wù)輔警、檢察系統(tǒng)輔助文員招聘筆試參考題庫含答案解析
- 2024年四川省南充市中考生物試卷真題(含官方答案)
- 勞動教育智慧樹知到期末考試答案章節(jié)答案2024年華中師范大學(xué)
- 成人高尿酸血癥與痛風(fēng)食養(yǎng)指南(2024年版)
- 2024年首都機場集團招聘筆試參考題庫附帶答案詳解
- 2023年山東省專升本考試高等數(shù)學(xué)Ⅲ試題和答案
- 抗血栓藥物臨床應(yīng)用與案例分析課件
- 吉林省地方教材家鄉(xiāng)小學(xué)二年級下冊家鄉(xiāng)教案
- 兒童長期臥床的護理
評論
0/150
提交評論