版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.二次函數(shù)的圖象如圖所示,則一次函數(shù)與反比例函數(shù)在同一平面直角坐標系中的大致圖象為()A. B. C. D.2.如圖,拋物線的對稱軸為直線,與軸的一個交點坐標為,其部分圖象如圖所示,下列結論:①;②;③方程的兩個根是,;④當時,的取值范圍是;⑤當時,隨增大而增大其中結論正確的個數(shù)是A.1個 B.2個 C.3個 D.4個3.點M(2,-3)關于原點對稱的點N的坐標是:()A.(-2,-3) B.(-2,3) C.(2,3) D.(-3,2)4.若一個圓錐的側面積是底面積的2倍,則圓錐側面展開圖的扇形的圓心角為()A.120° B.180° C.240° D.300°5.下圖是用來證明勾股定理的圖案被稱為“趙爽弦圖”,由四個全等的直角三角形和一個小正方形拼成的大正方形,對其對稱性表述,正確的是()A.軸對稱圖形 B.中心對稱圖形C.既是軸對稱圖形又是中心對稱圖形 D.既不是軸對稱圖形又不是中心對稱圖形6.拋物線y=﹣3(x﹣1)2+3的頂點坐標是()A.(﹣1,﹣3) B.(﹣1,3) C.(1,﹣3) D.(1,3)7.如圖,經過原點的⊙與軸分別交于兩點,點是劣弧上一點,則()A.是銳角 B.是直角 C.是鈍角 D.大小無法確定8.某人沿著斜坡前進,當他前進50米時上升的高度為25米,則斜坡的坡度是()A. B.1:3 C. D.1:29.圓錐的底面半徑是5cm,側面展開圖的圓心角是180°,圓錐的高是()A.5cm B.10cm C.6cm D.5cm10.二次函數(shù)y=ax2+bx+c的圖象如圖所示,在ab、ac、b2﹣4ac,2a+b,a+b+c,這五個代數(shù)式中,其值一定是正數(shù)的有()A.1個 B.2個 C.3個 D.4個11.下列關于x的方程是一元二次方程的有()①ax2+bx+c=0②x2=0③④A.②和③ B.①和② C.③和④ D.①和④12.如圖,AB是半圓O的直徑,∠BAC=40°,則∠D的度數(shù)是()A.140° B.130° C.120° D.110°二、填空題(每題4分,共24分)13.正六邊形的中心角為_____;當它的半徑為1時,邊心距為_____.14.已知正比例函數(shù)的圖像與反比例函數(shù)的圖像有一個交點的坐標是,則它們的另一個交點坐標為_________.15.若關于x的方程有兩個不相等的實數(shù)根,則a的取值范圍是________.16.如圖,在矩形ABCD中,點E是邊BC的中點,AE⊥BD,垂足為F,則tan∠BDE的值是_____17.微信給甲、乙、丙三人,若微信的順序是任意的,則第一個微信給甲的概率為_____.18.在一個不透明的袋中裝有黑色和紅色兩種顏色的球共個,每個球觸顏色外都相同,每次搖勻后隨即摸出一個球,記下顏色后再放回袋中,通過大量重復摸球實驗后,發(fā)現(xiàn)摸到黑球的頻率穩(wěn)定于,則可估計這個袋中紅球的個數(shù)約為__________.三、解答題(共78分)19.(8分)拋物線的頂點為,且過點,求它的函數(shù)解析式.20.(8分)在全校的科技制作大賽中,王浩同學用木板制作了一個帶有卡槽的三角形手機架.如圖所示,卡槽的寬度DF與內三角形ABC的AB邊長相等.已知AC=20cm,BC=18cm,∠ACB=50°,一塊手機的最長邊為17cm,王浩同學能否將此手機立放入卡槽內?請說明你的理由(參考數(shù)據(jù):sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)21.(8分)如圖,已知二次函數(shù)y=ax2+2x+c的圖象經過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.(1)求二次函數(shù)y=ax2+2x+c的表達式;(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C,若四邊形POP′C為菱形,請求出此時點P的坐標;(3)當點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標和四邊形ACPB的最大面積.22.(10分)我們把兩條中線互相垂直的三角形稱為“中垂三角形”.如圖1,圖2,圖3中,是的中線,,垂足為點,像這樣的三角形均為“中垂三角形.設.(1)如圖1,當時,則_________,__________;(2)如圖2,當時,則_________,__________;歸納證明(3)請觀察(1)(2)中的計算結果,猜想三者之間的關系,用等式表示出來,并利用圖3證明你發(fā)現(xiàn)的關系式;拓展應用(4)如圖4,在中,分別是的中點,且.若,,求的長.23.(10分)先化簡,再求值:,其中a=2.24.(10分)對任意一個三位數(shù),如果滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”.將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為.例如,對調百位與十位上的數(shù)字得到213,對調百位與個位上的數(shù)字得到321,對調十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和,,所以.(1)計算:,;(2)小明在計算時發(fā)現(xiàn)幾個結果都為正整數(shù),小明猜想所有的均為正整數(shù),你覺得這個猜想正確嗎?請判斷并說明理由;(3)若,都是“相異數(shù)”,其中,(,,、都是正整數(shù)),當時,求的最大值.25.(12分)閱讀以下材料,并按要求完成相應的任務.已知平面上兩點,則所有符合且的點會組成一個圓.這個結論最先由古希臘數(shù)學家阿波羅尼斯發(fā)現(xiàn),稱阿氏圓.阿氏圓基本解法:構造三角形相似.(問題)如圖1,在平面直角坐標中,在軸,軸上分別有點,點是平面內一動點,且,設,求的最小值.阿氏圓的關鍵解題步驟:第一步:如圖1,在上取點,使得;第二步:證明;第三步:連接,此時即為所求的最小值.下面是該題的解答過程(部分):解:在上取點,使得,又.任務:將以上解答過程補充完整.如圖2,在中,為內一動點,滿足,利用中的結論,請直接寫出的最小值.26.已知:如圖,在△ABC中,點D,E分別在邊AB,BC上,BA?BD=BC?BE(1)求證:△BDE∽△BCA;(2)如果AE=AC,求證:AC2=AD?AB.
參考答案一、選擇題(每題4分,共48分)1、B【解析】∵二次函數(shù)圖象開口向上,∴a>1,∵對稱軸為直線,∴b<1.∵與y軸的正半軸相交,∴c>1.∴的圖象經過第一、三、四象限;反比例函數(shù)圖象在第一、三象限,只有B選項圖象符合.故選B.2、C【分析】利用拋物線與軸的交點個數(shù)可對①進行判斷;由對稱軸方程得到,然后根據(jù)時函數(shù)值為0可得到,則可對②進行判斷;利用拋物線的對稱性得到拋物線與軸的一個交點坐標為,則可對③進行判斷;根據(jù)拋物線在軸上方所對應的自變量的范圍可對④進行判斷;根據(jù)二次函數(shù)的性質對⑤進行判斷.【詳解】解:拋物線與軸有2個交點,,所以①正確;,即,而時,,即,,所以②錯誤;拋物線的對稱軸為直線,而點關于直線的對稱點的坐標為,方程的兩個根是,,所以③正確;根據(jù)對稱性,由圖象知,當時,,所以④錯誤;拋物線的對稱軸為直線,當時,隨增大而增大,所以⑤正確.故選:.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù),二次項系數(shù)決定拋物線的開口方向和大小:當時,拋物線向上開口;當時,拋物線向下開口;一次項系數(shù)和二次項系數(shù)共同決定對稱軸的位置:當與同號時(即,對稱軸在軸左;當與異號時(即,對稱軸在軸右;常數(shù)項決定拋物線與軸交點位置:拋物線與軸交于;拋物線與軸交點個數(shù)由△決定:△時,拋物線與軸有2個交點;△時,拋物線與軸有1個交點;△時,拋物線與軸沒有交點.3、B【解析】試題解析:已知點M(2,-3),則點M關于原點對稱的點的坐標是(-2,3),故選B.4、B【詳解】試題分析:設母線長為R,底面半徑為r,∴底面周長=2πr,底面面積=πr2,側面面積=πrR,∵側面積是底面積的2倍,∴2πr2=πrR,∴R=2r,設圓心角為n,有=2πr=πR,∴n=180°.故選B.考點:圓錐的計算5、B【分析】根據(jù)軸對稱和中心對稱圖形的概念判斷即可.【詳解】“趙爽弦圖”是中心對稱圖形,但不是軸對稱圖形,故選:B.【點睛】本題主要考查軸對稱和中心對稱,會判斷軸對稱圖形和中心對稱圖形是解題的關鍵.6、D【分析】直接根據(jù)頂點式的特點求頂點坐標.【詳解】解:∵y=﹣3(x﹣1)2+3是拋物線的頂點式,∴頂點坐標為(1,3).故選:D.【點睛】本題主要考查二次函數(shù)的性質,掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x?h)2+k中,對稱軸為x=h,頂點坐標為(h,k).7、B【分析】根據(jù)圓周角定理的推論即可得出答案.【詳解】∵和對應著同一段弧,∴,∴是直角.故選:B.【點睛】本題主要考查圓周角定理的推論,掌握圓周角定理的推論是解題的關鍵.8、A【分析】根據(jù)題意,利用勾股定理可先求出某人走的水平距離,再求出這個斜坡的坡度即可.【詳解】解:根據(jù)題意,某人走的水平距離為:,∴坡度;故選:A.【點睛】此題主要考查學生對坡度的理解,在熟悉了坡度的定義后利用勾股定理求得水平距離是解決此題的關鍵.9、A【解析】設圓錐的母線長為R,根據(jù)圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和弧長公式得到2π?5=,然后解方程即可母線長,然后利用勾股定理求得圓錐的高即可.【詳解】設圓錐的母線長為R,根據(jù)題意得2π?5,解得R=1.即圓錐的母線長為1cm,∴圓錐的高為:5cm.故選:A.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.10、B【解析】試題分析:根據(jù)圖象可知:,則;圖象與x軸有兩個不同的交點,則;函數(shù)的對稱軸小于1,即,則;根據(jù)圖象可知:當x=1時,,即;故本題選B.11、A【解析】根據(jù)一元二次方程的定義進行解答即可.【詳解】①ax2+bx+c=0,當a=0時,該方程不是一元二次方程;②x2=0符合一元二次方程的定義;③符合一元二次方程的定義;④是分式方程.綜上所述,其中一元二次方程的是②和③.故選A.【點睛】本題考查了一元二次方程的定義,利用了一元二次方程的概念.只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特別要注意a≠0的條件.這是在做題過程中容易忽視的知識點.12、B【分析】根據(jù)圓周角定理求出∠ACB,根據(jù)三角形內角和定理求出∠B,求出∠D+∠B=180°,再代入求出即可.【詳解】∵AB是半圓O的直徑,∴∠ACB=90°,∵∠BAC=40°,∴∠B=180°﹣∠ACB﹣∠BAC=50°,∵A、B、C、D四點共圓,∴∠D+∠B=180°,∴∠D=130°,故選:B.【點睛】此題主要考查圓周角定理以及圓內接四邊形的性質,熟練掌握,即可解題.二、填空題(每題4分,共24分)13、60°【分析】首先根據(jù)題意作出圖形,然后可得△AOB是等邊三角形,然后由三角函數(shù)的性質,求得OH的長即可得答案.【詳解】如圖所示:∵六邊形ABCDE是正六邊形,∴∠AOB==60°,∴△AOB是等邊三角形,∴OA=OB=AB=1,作OM⊥AB于點M,∵OA=1,∠OAB=60°,∴OM=OA?sin60°=1×=.【點睛】本題考查正多邊形和圓及解直角三角形,正多邊形的每一邊所對的外接圓的圓心角叫做這個正多邊形的中心角;正多邊形的中心到正多邊形一邊的距離叫做這個正多邊形的邊心距;熟記特殊角的三角函數(shù)值及三角函數(shù)的定義是解題關鍵.14、(-1,-2)【分析】根據(jù)反比例函數(shù)圖象的對稱性得到反比例函數(shù)圖象與正比例函數(shù)圖象的兩個交點關于原點對稱,所以寫出點關于原點對稱的點的坐標即可.【詳解】∵正比例函數(shù)的圖像與反比例函數(shù)的圖像的兩個交點關于原點對稱,其中一個交點的坐標為,∴它們的另一個交點的坐標是.
故答案為:.【點睛】本題主要考查了反比例函數(shù)圖象的中心對稱性,理解反比例函數(shù)與正比例函數(shù)的交點一定關于原點對稱是關鍵.15、且【分析】根據(jù)根的判別式?>0,且二次項系數(shù)a-2≠0列式求解即可.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.【詳解】由題意得,解得且,故答案為:且.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.解答時要注意二次項的系數(shù)不能等于零.16、【解析】證明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的對稱性得:AE=DE,得出EF=DE,設EF=x,則DE=3x,由勾股定理求出DF==2x,再由三角函數(shù)定義即可得出答案.【詳解】解:∵四邊形ABCD是矩形,
∴AD=BC,AD∥BC,
∵點E是邊BC的中點,
∴BE=BC=AD,
∴△BEF∽△DAF,∴∴EF=AF,
∴EF=AE,
∵點E是邊BC的中點,
∴由矩形的對稱性得:AE=DE,
∴EF=DE,設EF=x,則DE=3x,
∴DF==2x,∴tan∠BDE===;故答案為:.【點睛】本題考查相似三角形的判定和性質,矩形的性質,三角函數(shù)等知識;熟練掌握矩形的性質,證明三角形相似是解決問題的關鍵.17、【分析】根據(jù)題意,微信的順序是任意的,微信給甲、乙、丙三人的概率都相等均為.【詳解】∵微信的順序是任意的,∴微信給甲、乙、丙三人的概率都相等,∴第一個微信給甲的概率為.故答案為.【點睛】此題考查了概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.18、【分析】根據(jù)頻率的定義先求出黑球的個數(shù),即可知紅球個數(shù).【詳解】解:黑球個數(shù)為:,紅球個數(shù):.故答案為6【點睛】本題考查了頻數(shù)和頻率,頻率是頻數(shù)與總數(shù)之比,掌握頻數(shù)頻率的定義是解題的關鍵.三、解答題(共78分)19、【分析】已知拋物線的頂點,故可設頂點式,由頂點可知,將點代入即可.【詳解】解:設將點代入得解得所以【點睛】本題考查了拋物線的解析式,由題中所給點的特征選擇合適的拋物線的解析式的設法是解題的關鍵.20、王浩同學能將手機放入卡槽DF內,理由見解析【分析】作AD⊥BC于D,根據(jù)正弦、余弦的定義分別求出AD和CD的長,求出DB的長,根據(jù)勾股定理即可得到AB的長,然后與17比較大小,得到答案.【詳解】解:王浩同學能將手機放入卡槽DF內,理由如下:作AD⊥BC于點D,∵∠C=50°,AC=20,∴AD=AC?sin50°≈20×0.8=16,CD=AC?cos50°≈20×0.6=12,∴DB=BC﹣CD=18﹣12=6,∴AB===,∴DF=AB=,∵17=<,∴王浩同學能將手機放入卡槽DF內.【點睛】本題考查的是解直角三角形的應用,掌握銳角三角函數(shù)的定義是解題的關鍵.21、(1)y=﹣x2+2x+3(2)(,)(3)當點P的坐標為(,)時,四邊形ACPB的最大面積值為【分析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)菱形的對角線互相垂直且平分,可得P點的縱坐標,根據(jù)自變量與函數(shù)值的對應關系,可得P點坐標;(3)根據(jù)平行于y軸的直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得PQ的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質,可得答案.【詳解】(1)將點B和點C的坐標代入函數(shù)解析式,得解得二次函數(shù)的解析式為y=﹣x2+2x+3;(2)若四邊形POP′C為菱形,則點P在線段CO的垂直平分線上,如圖1,連接PP′,則PE⊥CO,垂足為E,∵C(0,3),∴∴點P的縱坐標,當時,即解得(不合題意,舍),∴點P的坐標為(3)如圖2,P在拋物線上,設P(m,﹣m2+2m+3),設直線BC的解析式為y=kx+b,將點B和點C的坐標代入函數(shù)解析式,得解得直線BC的解析為y=﹣x+3,設點Q的坐標為(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.當y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,S四邊形ABPC=S△ABC+S△PCQ+S△PBQ當m=時,四邊形ABPC的面積最大.當m=時,,即P點的坐標為當點P的坐標為時,四邊形ACPB的最大面積值為.【點睛】本題考查了二次函數(shù)綜合題,解(1)的關鍵是待定系數(shù)法;解(2)的關鍵是利用菱形的性質得出P點的縱坐標,又利用了自變量與函數(shù)值的對應關系;解(3)的關鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質.22、(1),;(2),;(3),證明見解析;(4)【分析】(1)根據(jù)三角形的中位線得出;,進而得到計算即可得出答案;(2)連接EF,中位線的性質以及求出AP、BP、EP和FP的長度再根據(jù)勾股定理求出AE和BF的長度即可得出答案;(3)連接EF,根據(jù)中位線的性質得出,根據(jù)勾股定理求出AE與AP和EP的關系以及BF與BP和FP的關系,即可得出答案;(4)取的中點,連接,結合題目求出四邊形是平行四邊形得出AP=FP即可得到是“中垂三角形”,根據(jù)第三問得出的結論代入,即可得出答案(連接,交于點,證明求得是的中線,進而得出是“中垂三角形”,再結合第三問得出的結論計算即可得出答案).【詳解】解:(1)∵是的中線,∴是的中位線,∴,且,易得.∵,∴,∴.由勾股定理,得,∴.(2)如圖2,連結.∵是的中線,∴是的中位線,∴,且,易得..∵,∴,∴.由勾股定理,得,∴.(3)之間的關系是.證明如下:如圖3,連結.∵是的中線,∴是的中位線.∴,且,易得.在和中,∵,,∴.∴.∴,即.(4)解法1:設的交點為.如圖4,取的中點,連接.∵分別是的中點,是的中點,∴.又∵,∴.∵四邊形是平行四邊形,∴,∴,∴四邊形是平行四邊形,∴,∴是“中垂三角形”,∴,即,解得.(另:連接,交于點,易得是“中垂三角形”,解法類似于解法1,如圖5)解法2:如圖6,連接,延長交的延長線于點.在中,∵分別是的中點,∴.∵,∴.又∵四邊形為平行四邊形,∴,易得,∴,∴,∴是的中線,∴是“中垂三角形”,∴.∵,∴.∴,解得.∵是的中位線,∴.【點睛】本題考查的是相似三角形的判定與性質、勾股定理以及全等三角形的判定與性質,注意類比思想在本題中的應用,第四問方法一得出是解決本題的關鍵.23、,2【分析】先根據(jù)分式的運算順序和運算法則化簡原式,再將a=2代入計算即可;【詳解】解:原式=;當a=2時,原式值=;【點睛】本題主要考查了分式的化簡求值,掌握分式的運算順序和運算法則是解題的關鍵.24、(1)10;12.(2)猜想正確.理由見解析;(3).【分析】(1)根據(jù)“相異數(shù)”的定義即可求解;(2)設的三個數(shù)位數(shù)字分別為,,,根據(jù)“相異數(shù)”的定義列出即可求解;(3)根據(jù),都是“相異數(shù)”,得到,,根據(jù)求出x,y的值即可求解.【詳解】(1);.(2)猜想正確.設的三個數(shù)位數(shù)字分別為,,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)業(yè)投資信托協(xié)議書(2篇)
- 2024年草船借箭教學設計(53篇)
- 2024年福建省莆田市涵江區(qū)三江口鎮(zhèn)招聘社區(qū)工作者考前自測高頻考點模擬試題(共500題)含答案
- 2024年福建省《消防員資格證之一級防火考試》必刷500題標準卷
- 黃金卷3-【贏在中考·黃金八卷】(原卷版)
- 2024屆四川省綿陽市高三上學期第二次診斷性考試(二模)文綜試題
- 2025屆南開中學初中考生物押題試卷含解析
- 互補發(fā)電系統(tǒng)行業(yè)深度研究報告
- 2025公司質押借款合同范本
- 2024年度天津市公共營養(yǎng)師之二級營養(yǎng)師綜合檢測試卷A卷含答案
- 公務車輛定點加油服務投標文件(技術方案)
- 《中國制造業(yè)的崛起》課件
- 中小學學校安全管理制度匯編
- DB21∕T 3240-2020 芹菜農藥安全使用生產技術規(guī)程
- 2024年全國《考評員》專業(yè)技能鑒定考試題庫與答案
- 廣州滬教牛津版七年級英語上冊期中試卷(含答案)
- 2025版國家開放大學法律事務專科《民法學(1)》期末考試總題庫
- 幼兒心理健康的教育課件
- DB43T 1167-2016 高純(SiO ≥99.997%)石英砂 規(guī)范
- 《環(huán)境保護產品技術要求 工業(yè)廢氣吸附凈化裝置》HJT 386-2007
- 化工過程安全管理導則學習考試題及答案
評論
0/150
提交評論