版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
第二章財務(wù)管理的價值觀念第一節(jié)、貨幣的時間價值第二節(jié)、貨幣時間價值的計算第三節(jié)、風(fēng)險報酬第二章財務(wù)管理的價值觀念第一節(jié)、貨幣的時間價值時間價值的概念2
公元1797年,拿破侖參觀盧森堡大公國第一國立小學(xué)的時候,向該校贈送了一束價值3個金路易的玫瑰花。拿破侖宣稱,玫瑰花是兩國友誼的象征,為了表示法蘭西共和國愛好和平的誠意,只要法蘭西共和國存在一天,他將每年向該校贈送一束同樣價值的玫瑰花。當(dāng)然,由于年年征戰(zhàn),拿破侖并沒有履行他的諾言。但歷史前進的腳步一刻也不曾停息,轉(zhuǎn)眼間已是近一個世紀(jì)的時光。公元1984年,盧森堡王國鄭重向法國致函:要求法國政府在拿破侖的聲譽和1
375596法郎中,選擇其一,進行賠償。這就是著名的“玫瑰花懸案”而其中,這高達百萬法郎的巨款,就是3個金路易的本金(當(dāng)時,1金路易約等于20法郎)。
思考:為何每年贈送價值3路易的玫瑰花,在187年后卻相當(dāng)于要一次性支付1375596法郎?案例
時間價值的概念2公元1797年,拿破侖參觀盧第一節(jié)貨幣時間價值需要注意的問題:時間價值產(chǎn)生于生產(chǎn)流通領(lǐng)域,時間價值產(chǎn)生于資金運動之中時間價值的大小取決于資金周轉(zhuǎn)速度的快慢思考:1、將錢放在口袋里會產(chǎn)生時間價值嗎?2、停頓中的資金會產(chǎn)生時間價值嗎?3、企業(yè)加速資金的周轉(zhuǎn)會增值時間價值嗎?第一節(jié)貨幣時間價值需要注意的問題:例題引入一個男孩今年11歲,在他5歲生日時,收到一份外祖父送的禮物,這份禮物是以利率為5%的復(fù)利計息的10年到期、本金為4000元的債券形式提供的。男孩父母計劃在其19、20、21、22歲生日時,各用3000元資助他的大學(xué)學(xué)習(xí),為了實現(xiàn)這個計劃,外祖父的禮物債券到期后,其父母將其重新投資,除了這筆投資外,其父母在孩子12至18歲生日時,每年還需進行多少投資才能完成其資助孩子的教育計劃?設(shè)所有將來的投資利潤率均為6%。A=[3000(P/A,6%,4)-4000*(F/P,5%,10)(F/P,6%,3)]/(P/A,6%,7)例題引入一個男孩今年11歲,在他5歲生日時,收到一份外祖父送第一節(jié)貨幣時間價值一、貨幣的時間價值
(一)貨幣時間價值的概念是指貨幣隨著時間的推移而發(fā)生的增值,也稱資金時間價值。(貨幣資金經(jīng)歷一定時間的投資和再投資所增加的價值)
例如:將1元存入銀行,利息率是10%,一年后的,將會得到1.1元,那這0.1元的利息就是經(jīng)過一年的時間投資后的價值,利息就是貨幣時間價值。注:資金只有在投入生產(chǎn)經(jīng)營過程后才能產(chǎn)生時間價值。第一節(jié)貨幣時間價值一、貨幣的時間價值貨幣時間價值的實質(zhì)資金運動的全過程:G—W—G’G’=G+?GG代表貨幣W代表商品包含增值額在內(nèi)的全部價值是形成于生產(chǎn)過程的,其中增值部分是工人創(chuàng)造的剩余價值。時間價值的真正來源是工人創(chuàng)造的剩余價值。貨幣時間價值的實質(zhì)資金運動的全過程:G—W—G’G’=G+貨幣時間價值的表現(xiàn)形式1、相對數(shù):沒有風(fēng)險和沒有通貨膨脹條件下的社會平均資金利潤率;2、絕對數(shù):即時間價值額是資金在生產(chǎn)經(jīng)營過程中帶來的真實增值額,即一定數(shù)額的資金與時間價值率的乘積。貨幣時間價值的表現(xiàn)形式1、相對數(shù):沒有風(fēng)險和沒有通貨膨脹條件(二)現(xiàn)值和終值現(xiàn)值:
(presentvalue)是指未來某一時點上的一定量現(xiàn)金折合到現(xiàn)在的價值,俗稱"本金"。通常記作P終值:(futurevalue)又稱將來值或本利和,是指現(xiàn)在一定量的資金在未來某一時點上的價值。通常記作F(二)現(xiàn)值和終值現(xiàn)值:(presentvalue)二、貨幣時間價值的產(chǎn)生和意義1、貨幣時間價值是資源稀缺性的體現(xiàn)。2、貨幣時間價值是信用貨幣制度下,流通中貨幣的固有特征。3、貨幣時間價值是人們認(rèn)知心理的反映二、貨幣時間價值的產(chǎn)生和意義1、貨幣時間價值是資源稀缺性的體貨幣時間價值的意義1、是企業(yè)籌資決策的重要依據(jù)2、貨幣時間價值是企業(yè)投資決策的重要依據(jù)3、是企業(yè)經(jīng)營決策的重要依據(jù)貨幣時間價值的意義1、是企業(yè)籌資決策的重要依據(jù)第二節(jié)貨幣時間價值的計算1、一次性收付款項的終值與現(xiàn)值在某一特定時點上一次性支付(或收?。?,經(jīng)過一段時間后再相應(yīng)地一次性收?。ɑ蛑Ц叮┑目铐?,即為一次性收付款項。這種性質(zhì)的款項在日常生活中十分常見,如將10,000元錢存入銀行,一年后提出10,500元,這里所涉及的收付款項就屬于一次性收付款項。
現(xiàn)值(P)又稱本金,是指未來某一時點上的一定量現(xiàn)金折合為現(xiàn)在的價值。前例中的10,000元就是一年后的10,500元的現(xiàn)值。終值(F)又稱將來值,是現(xiàn)在一定量現(xiàn)金在未來某一時點上的價值,俗稱本利和。前例中的10,500元就是現(xiàn)在的10,000元在一年后的終值。
終值與現(xiàn)值的計算涉及到利息計算方式的選擇。目前有兩種利息計算方式,即單利和復(fù)利。第二節(jié)貨幣時間價值的計算1、一次性收付款項的終值與現(xiàn)值第二節(jié)貨幣時間價值的計算一、一次性收付款項資金現(xiàn)值與終值的計算(一)單利現(xiàn)值及終值計算單利:本金按年數(shù)計算利息,以前年度產(chǎn)生的利息不再計算利息。只是本金計算利息,所生利息均不加入本金計算利息的一種計息方法。第二節(jié)貨幣時間價值的計算一、一次性收付款項資金現(xiàn)值與終值的(一)單利現(xiàn)值及終值計算
單利:——只就借(貸)的原始金額或本金支付(收?。┑睦ⅰ喔髌诶⑹且粯拥?/p>
——涉及三個變量函數(shù):
原始金額或本金、
利率、
借款期限
(一)單利現(xiàn)值及終值計算
單利:(一)單利的終值與現(xiàn)值所謂單利計息方式,是指每期都按初始本金計算利息,當(dāng)期利息即使不取出也不計入下期本金。即,本生利,利不再生利。單利利息的計算I=P×i×n期數(shù)期初利息期末1PP*iP+Pi2P+PiP*iP+2Pi3P+2PiP*iP+3Pi…………nP+(n-1)PiP*iP+nPi(一)單利的終值與現(xiàn)值期數(shù)期初利息期末1PP*iP+Pi2P1、單利終值的計算單利終值:是指現(xiàn)在的一定量資金按單利計算的未來價值。
公式:F=p+I=p+pXiXn=p(1+ixn)i——利息p——本金F——單利終值i——利率n——期數(shù)
1、單利終值的計算單利終值:是指現(xiàn)在的一定量資金按單利計算的【例題】某人將100元存入銀行,年利率2%,求5年后的終值。
F=P×(1+i×n)=1OO+1OO×2%×5
=1OO×(1+5×2%)=110(元)
【例題】某人將100元存入銀行,年利率2%,求5年后的終值。例題企業(yè)年初將1000元存入銀行,存款期為3年,計息期1年,年利息率為5%。要求按單利計算到期本利和。F=PX(1+ixn)=1000x(1+3x5%)=1150例題企業(yè)年初將1000元存入銀行,存款期為3年,計息期1年,2、單利現(xiàn)值的計算單利現(xiàn)值:是指在未來某一時點上的一定量資金折合成現(xiàn)在的價值?,F(xiàn)值的計算與終值的計算是互逆的。
公式:p=F/(1+ixn)2、單利現(xiàn)值的計算單利現(xiàn)值:是指在未來某一時點上的一定量資金【例題】某人為了5年后能從銀行取出500元,在年利率2%的情況下,目前應(yīng)存入銀行的金額是多少?
P=F/(1+n×i)=500/(1+5×2%)≈454.55(元)【例題】某人為了5年后能從銀行取出500元,在年利率2%的情例題假設(shè)你希望在第五年末取得本利和1000元,用于支付一筆款項,利率為5%,按單利方式計算條件下,那么你現(xiàn)在需要存入銀行的金額為多少?P=F/(1+ixn)=1000/(1+5x5%)=800例題假設(shè)你希望在第五年末取得本利和1000元,用于支付一筆款結(jié)論:(1)單利的終值和單利的現(xiàn)值互為逆運算;(2)單利終值系數(shù)(1+
n×i
)和單利現(xiàn)值系數(shù)1/(1+
n×i)互為倒數(shù)。結(jié)論:例1:某人持有一張帶息票據(jù),面額為2000元,票面利率5%,出票日期為8月12日,到期日為11月10日(90天)。則該持有者到期可得利息為:I=2000×5%×90/360=25(元)
到期本息和為:
F=P*(1+i*n)=2000*(1+5%*90/360)=2025(元)除非特別指明,在計算利息時,給出的利率均為年利率例2某人存入銀行一筆錢,年利率為8%,想在1年后得到1000元,問現(xiàn)在應(yīng)存入多少錢?P=F/(1+i*n)=1000/(1+8%*1)=926(元)例1:某人持有一張帶息票據(jù),面額為2000元,票面利率5%,(二)復(fù)利的計算
復(fù)利是指不僅本金要計算利息,利息也要計算利息。俗稱:利滾利
“利滾利”:指每經(jīng)過一個計息期,要將所生利息加入到本金中再計算利息,逐期滾算。
計息期是指相鄰兩次計息的時間間隔,年、半年、季、月等,除特別指明外,計息期均為1年。(二)復(fù)利的計算
復(fù)利是指不僅本金要計算利息,利息也要計算11.復(fù)利計息方式如下:復(fù)利終值計算:F=P(1+i)n式中,(1+i)n稱為一元錢的終值,或復(fù)利終值系數(shù),記作:(F/P,i,n)。該系數(shù)可通過查表方式直接獲得。則:F=P(F/P,i,n)
期數(shù)期初利息期末1PP*iP(1+i)2P(1+i)P(1+i)*iP(1+i)23P(1+i)2P(1+i)2*iP(1+i)3
nP(1+i)n-1P(1+i)n-1*iP(1+i)n11.復(fù)利計息方式如下:期數(shù)期初利息期末1PP*iP(1+i
終值
又稱復(fù)利終值,是指若干期以后包括本金和利息在內(nèi)的未來價值。
FVn(F):FutureValue
復(fù)利終值
PV:
PresentValue
復(fù)利現(xiàn)值i:Interestrate利息率n:Number計息期數(shù)復(fù)利終值終值又稱復(fù)利終值,是指若干期以后包括本金和例:某人將20,000元存放于銀行,年存款利率為6%,在復(fù)利計息方式下,三年后的本利和為多少。FV=F=20,000(F/P,6%,3)經(jīng)查表得:(F/P,6%,3)=1.191FV=F=20,000×1.191=23,820例:某人將20,000元存放于銀行,年存款利率為6%,在復(fù)利例題某人將10000元投投資一項事業(yè),年報酬率為6%,按復(fù)利計算,經(jīng)過3年后的本利和是多少?F=P(1+i)n=F=P(F/P,i,n)
=10000x1.191=11910例題某人將10000元投投資一項事業(yè),年報酬率為6%,按復(fù)利2、復(fù)利現(xiàn)值復(fù)利現(xiàn)值是復(fù)利終值的對稱概念,指未來一定時間的特定資金按復(fù)利計算的現(xiàn)在價值,或者說是為取得將來一定本利和現(xiàn)在所需要的本金1)復(fù)利現(xiàn)值的特點是:貼現(xiàn)率越高,貼現(xiàn)期數(shù)越多,復(fù)利現(xiàn)值越小。2)P=F×(1+i)-n(1+i)-n復(fù)利現(xiàn)值系數(shù)或1元的復(fù)利現(xiàn)值,用(P/F,i,n)表示。2、復(fù)利現(xiàn)值復(fù)利現(xiàn)值是復(fù)利終值的對稱概念,指未來例5某人有18萬元,擬投入報酬率為8%的投資項目,經(jīng)過多少年才可使現(xiàn)有資金增長為原來的3.7倍?
F=180000*3.7=666000(元)F=180000*(1+8%)n666000=180000*(1+8%)n(1+8%)n=3.7(F/P,8%,n)=3.7
查”復(fù)利終值系數(shù)表”,在i=8%的項下尋找3.7,(F/P,8%,17)=3.7,所以:n=17,即17年后可使現(xiàn)有資金增加3倍.
例5某人有18萬元,擬投入報酬率為8%的投資項目,經(jīng)過多少例題某人要想在3年后得到1000元,銀行存款利率為8%,問現(xiàn)在應(yīng)存入多少錢?P=F/(1+i)n=1000x0.794=794(元)例題某人要想在3年后得到1000元,銀行存款利率為8%,問現(xiàn)復(fù)利終值和復(fù)利現(xiàn)值
由終值求現(xiàn)值,稱為貼現(xiàn),貼現(xiàn)時使用的利息率稱為貼現(xiàn)率。
2023/1/4
上式中的叫復(fù)利現(xiàn)值系數(shù)或貼現(xiàn)系數(shù),可以寫為,則復(fù)利現(xiàn)值的計算公式可寫為:復(fù)利終值和復(fù)利現(xiàn)值由終值求現(xiàn)值,稱為貼現(xiàn)三、名義利率和實際利率名義利率:是指當(dāng)利息在一年內(nèi)要復(fù)利幾次時給出的年利率,而將相當(dāng)于一年復(fù)利一次的利率叫實際利率。名義利率和實際利率的換算公式:i=(1+r/m)^m-1例:年利率為12%,按季度復(fù)利計息,則實際利率為多少?i=(1+12%/4)^4-1=12.55%三、名義利率和實際利率名義利率:是指當(dāng)利息在一年內(nèi)要復(fù)利幾次四、年金年金是指一定時期內(nèi)等額、定期的系列收付款項。比如:每月支付租金、分期付款賒購、分期償還貸款、分期支付工程款等;(普通)年金的終值和現(xiàn)值即付年金的終值和現(xiàn)值先付年金的終值和現(xiàn)值延期年金現(xiàn)值的計算永續(xù)年金現(xiàn)值的計算四、年金年金是指一定時期內(nèi)等額、定期的系列收付款項。2.1.4年金終值和現(xiàn)值普通年金(后付年金)——指一定時期每期期末有等額收付款項的年金。普通年金終值的計算公式:34※普通年金(ordinaryannuity)的終值和現(xiàn)值的計算
或者說是一定時期內(nèi)每期期末等額收付款項的復(fù)利終值之和F。2.1.4年金終值和現(xiàn)值普通年金(后付年金)普通年金終值的2.1.4年金終值和現(xiàn)值A(chǔ)代表年金數(shù)額;i代表利息率;n代表計息期數(shù);35※后付年金的終值2.1.4年金終值和現(xiàn)值A(chǔ)代表年金數(shù)額;35※后付年金第二章-貨幣時間價值分析課件式中:
稱為“一元年金的終值”或“年金終值系數(shù)”,記作:(F/A,i,n)。該系數(shù)可通過查表獲得,則:
F=A(F/A,i,n)例8:某人每年年末存入銀行100元,若年率為10%,則第5年末可從銀行一次性取出多少錢?F=100(F/A,10%,5)查表得:(F/A,10%,5)=6.1051F=100×6.1051=610.51(元)式中:
:FVAn:Annuityfuturevalue
年金終值
A:Annuity
年金數(shù)額
i:Interestrate
利息率
n:Number
計息期數(shù)可通過查年金終值系數(shù)表求得F==A*(F/A,i,n)(F/A,i,n):FVAn:Annuityfuturevalue例題某人從30歲起每年末存入8000元,連續(xù)十年,銀行利率8%,問10年后能取多少本利和?
F=A(F/A,i,n)=8000x14.487=115896例題某人從30歲起每年末存入8000元,連續(xù)十年,銀行利率8某人為失學(xué)兒童進行九年義務(wù)教育捐獻,每年捐獻1000元,銀行利率為2%,問九年后相當(dāng)于捐獻多少錢?某人為失學(xué)兒童進行九年義務(wù)教育捐獻,每年捐獻1000元,銀行(二)年償債基金的計算償債基金,是指為了在約定的未來某一時點清償某筆債務(wù)或積聚一定數(shù)額的資金而必須分次等額形成的存款準(zhǔn)備金。年償債基金的計算實際上是年金終值的逆運算,其計算公式為:
式中的分式稱作“償債基金系數(shù)”,記作(A/F,i,n)。該系數(shù)可通過查“償債基金系數(shù)表”獲得,或通過年金終值系數(shù)的倒數(shù)推算出來。所以:A=F(A/F,i,n)或A=F/(F/A,i,n)(二)年償債基金的計算例:假設(shè)某企業(yè)有一筆4年后到期的借款,到期值為1000萬元。若存款年利率為10%,則為償還該項借款應(yīng)建立的償債基金應(yīng)為多少?A=1000/(F/A,10%,4)查表得:(F/A,10%,4)=4.6410A=1000/4.6410=215.4(萬元)例:假設(shè)某企業(yè)有一筆4年后到期的借款,到期值為1000萬元。例:某家長打算在孩子20歲時出國留學(xué),費用是人民幣120萬,從出生滿周歲開始分期等額地存錢,期限20年,銀行利率6%,問20年中該家長每年年末應(yīng)存多少錢?A=F(A/F,i,n)=120/36.786=3.2621例:某家長打算在孩子20歲時出國留學(xué),費用是人民幣120萬,普通年金現(xiàn)值(后付年金現(xiàn)值)
是指一定時期內(nèi),每期期末等額系列收付款項的復(fù)利現(xiàn)值之和。后付年金現(xiàn)值的計算公式:普通年金現(xiàn)值(后付年金現(xiàn)值)
是指一定時期內(nèi),每期期末等額系
PVAn:Annuitypresentvalue
年金現(xiàn)值
可通過查年金值系數(shù)表求得
(P/A,i,n)PVAn:Annuitypresentvalue可后付年金的現(xiàn)值2023/1/4后付年金的現(xiàn)值2022/12/292023/1/4后付年金的現(xiàn)值2022/12/29后付年金的現(xiàn)值式中稱為“一元年金的現(xiàn)值”或“年金現(xiàn)值系數(shù)”,記作(P/A,i,n)。該系數(shù)可通過查表獲得,則:
P=A(P/A,i,n)式中例10:租入某設(shè)備,每年年未需要支付租金120元,年復(fù)利率為10%,則5年內(nèi)應(yīng)支付的租金總額的現(xiàn)值為多少?P=120(P/A,10%,5)查表得:(P/A,10%,5)=3.7908則:P=120×3.7908≈455(元)例10:租入某設(shè)備,每年年未需要支付租金120元,年復(fù)利率為(四)年資本回收額的計算
資本回收是指在給定的年限內(nèi)等額回收初始投入資本或清償所欠債務(wù)的價值指標(biāo)。年資本回收額的計算是年金現(xiàn)值的逆運算。其計算公式為:
式中的分式稱作“資本回收系數(shù)”,記為(A/P,i,n)。該系數(shù)可通過查“資本回收系數(shù)表”或利用年金現(xiàn)值系數(shù)的倒數(shù)求得。上式也可寫作:A=P(A/P,i,n)或A=P/(P/A,i,n)(四)年資本回收額的計算例11:某企業(yè)現(xiàn)在借得1000萬元的貸款,在10年內(nèi)以年利率12%等額償還,則每年應(yīng)付的金額為:A=1000÷(P/A,12%,10)查表得:(P/A,12%,10)=5.6502則A=1000÷5.6502≈177例11:某企業(yè)現(xiàn)在借得1000萬元的貸款,在10年內(nèi)以年利率問題:復(fù)利的終值與現(xiàn)值的起始時間相關(guān)與終值和現(xiàn)值之間的期間個數(shù)相關(guān)?如果我在第2年年末存入銀行1萬元,銀行利率為5%,第五年年末我可以從銀行取出多少資金?如果我現(xiàn)在存入銀行1萬元,銀行利率為5%,第三年年末我可以從銀行取出多少資金?解:1)F=1*(1+5%)32)F=1*(1+5%)3
同理,年金的終值與年金的起始點沒有關(guān)系,而與年金的終值和現(xiàn)值之間的期間數(shù)或者說年金個數(shù)密切關(guān)聯(lián).如果我從第2年年末開始每年末存入銀行1萬元,銀行利率為5%,第五年年末我可以從銀行取出多少資金?如果我從現(xiàn)在開始每年初存入銀行1萬元,銀行利率為5%,第三年年末我可以從銀行取出多少資金?解:1)F=1*(1+5%)3+1*(1+5%)2+1*(1+5%)1+1*(1+5%)02)F=1*(1+5%)3+1*(1+5%)2+1*(1+5%)1+1*(1+5%)0
問題:復(fù)利的終值與現(xiàn)值的起始時間相關(guān)與終值和現(xiàn)值之間的期間一、即付年金終值的計算(先付年金)
即付年金,是指從第一期起在一定時期內(nèi)每期期初等額收付的系列款項,又稱先付年金、預(yù)付年金。
即付年金終值的計算
方法一:F=A(F/A,i,n+1)–A=A[(F/A,i,n+1)–1]一、即付年金終值的計算(先付年金)
即付年金,是指從第
(F/A,i,n)=(F/A,i,n)=
F=A(F/A,i,n)(1+i)
例:某公司決定連續(xù)5年于每年年初存入100萬元作為住房基金,銀行存款利率為10%。則該公司在第5年末能一次取出的本利和為:1)F=100×[(F/A,10%,6)–1]
查表:(F/A,10%,6)=7.7156F=100×[7.7156–1]=671.562)F=100(F/A,10%,5)(1+10%)查表:(F/A,10%,5)=6.1051F=100×6.1051×1.1=671.56例:某公司決定連續(xù)5年于每年年初存入100萬元作為住房基金,例:已知某企業(yè)連續(xù)8年每年年末存入1000元,年利率為10%,8年后本利和為11436元,試求,如果改為每年年初存入1000元,8年后本利和為()。A、12579.6B、12436C、10436.6D、11436解:由已知條件知,1000×(F/A,10%,8)=11436所以:F=1000(F/A,10%,8)(1+10%)=11436×1.1=12579.6例:已知某企業(yè)連續(xù)8年每年年末存入1000元,年利率(二)即付年金現(xiàn)值的計算
是指一定時期內(nèi)每期期初等額收付款項的復(fù)利現(xiàn)值之和。
方法一:P=A(P/A,i,n-1)+A=A[(P/A,i,n-1)+1](二)即付年金現(xiàn)值的計算
是指一定時期內(nèi)每期期初等額收付款項第二章-貨幣時間價值分析課件例14:當(dāng)銀行利率為10%時,一項6年分期付款的購貨,每年初付款200元,該項分期付款相當(dāng)于第一年初一次現(xiàn)金支付的購價為多少元?1)P=200[(P/A,10%,5)+1]
查表:(P/A,10%,5)=3.7908P=200×[3.7908+1]=958.162)P=200(P/A,10%,6)(1+10%)
查表:(P/A,10%,6)=4.3553P=200×4.3553×1.1=958.16例14:當(dāng)銀行利率為10%時,一項6年分期付款的購貨,每年初2023/1/4某企業(yè)租用一臺設(shè)備,在10年中每年年初要支付租金5000元,年利息率為8%,則這些租金的現(xiàn)值為:例題先付年金的現(xiàn)值2022/12/29某企業(yè)租用一臺設(shè)備,在10年中每2、遞延年金(deferredannuity)遞延年金:是指第一次收付款發(fā)生時間與第一期無關(guān),而是隔若干期后才開始發(fā)生的系列等額收付款項。注:凡不是從第一期開始的普通年金就是遞延年金。2、遞延年金(deferredannuity)遞延年金:是遞延年金終值的計算遞延年金與普通年金相同,因前面沒有收付款期限,后面才發(fā)生收付款時期。所以與遞延期無關(guān)。遞延年金終值計算公式:
F=Ax(F/A,i,n)遞延年金終值的計算遞延年金與普通年金相同,因前面沒有收付款期3.遞延年金現(xiàn)值計算
在最初若干期(m)沒有收付款項的情況下,后面若干期(n)有等額的系列收付款項。——(deferredannuity)
3.遞延年金現(xiàn)值計算在最初若干期(m)沒在最初若干期(m)沒有收付款項的情況下,后面若干期(n)有等額的系列收付款項。P=A·
(P/A,i,n)·
(P/F,i,m)P=A·
(F/A,i,n)·
(P/F,i,(n+m))P=A(P/A,i,(m+n))-A
(P/A,i,m)AAAAAA0123……mm+1m+2m+3m+4…m+n在最初若干期(m)沒有收付款項的情況下,后面
例15:某人在年初存入一筆資金,存滿5年后每年末取出1000元,至第10年末取完,銀行存款利率為10%。則此人應(yīng)在最初一次存入銀行多少錢?
解:方法一:P=1000(P/A,10%,5)(P/F,10%,5)查表:(P/A,10%,5)=3.7908(P/F,10%,5)=0.6209所以:P=1000×3.7908×0.6209≈2354方法二:P=1000[(P/A,10%,10)-(P/A,10%,5)]
查表:(P/A,10%,10)=6.1446(P/A,10%,5)=3.7908P=1000×[6.1446-3.7908]≈2354例15:某人在年初存入一筆資金,存滿5年后每年末取出10例16:某公司擬購置一處房產(chǎn),房主提出兩種付款方案:1.從現(xiàn)在開始,每年年初支付20萬元,連續(xù)支付10次,共200萬元。2.從第5年開始,每年年末支付25萬元,連續(xù)支付10次,共250萬元。假定該公司的最低報酬率為10%,你認(rèn)為該公司應(yīng)選擇哪個方案?例16:某公司擬購置一處房產(chǎn),房主提出兩種付款方案:P=20(P/A,10%,10)(1+10%)=20×6.1446×1.1=135.18或=20[(P/A,10%,9)+1]=20[5.7590+1]=135.18P=25(P/A,10%,10)(P/F,10%,4)=25×6.1446×0.683=104.92或=25[(P/A,10%,14)–(P/A,10%,4)]=25[7.3667–3.1699]=104.92
P=20(P/A,10%,10)(1+10%)=20×64.永續(xù)年金現(xiàn)值的計算——無限期支付的年金(perpetualannuity)永續(xù)年金,是指無限期等額收付的特種年金??梢暈槠胀杲鸬奶厥庑问剑雌谙挹呌跓o窮大的普通年金。由于永續(xù)年金持續(xù)期無限,沒有終止的時間,因此沒有終值,只有現(xiàn)值。P=A/i4.永續(xù)年金現(xiàn)值的計算——無限期支付的年金(perpetua例17:擬建立一項永久性的獎學(xué)金,每年計劃頒發(fā)10000元獎金。若年利率為10%,現(xiàn)在應(yīng)存入多少錢?
例18:某人持有的某公司優(yōu)先股,每年每股股利為2元,若此人想長期持有,在利率為10%的情況下,請對該項股票投資進行估價。
P=A/i=2/10%=20(元)例17:擬建立一項永久性的獎學(xué)金,每年計劃頒發(fā)10000元獎資金時間價值練習(xí)四、計算分析題:1、某人在5年后需用現(xiàn)金50000元,如果每年年年未存款一次,在利率為10%的情況下,此人每年未存現(xiàn)金多少元?若在每年初存入的話應(yīng)存入多少?50000=a*(F/A,10%,5)=a*(F/A,10%,6)-a=a*(F/A,10%,5)*(1+10%)2、某企業(yè)于第六年初開始每年等額支付一筆設(shè)備款項2萬元,連續(xù)支付5年,在利率為10%的情況下,若現(xiàn)在一次支付應(yīng)付多少?該設(shè)備在第10年末的總價又為多少?M=4,n=5,p=2*(P/A,10%,5)(P/F,10%,4)f=p(F/P,10%,10)資金時間價值練習(xí)四、計算分析題:資金時間價值練習(xí)1、某人從第四年開始每年末存入2000元,連續(xù)存入7年后,于第十年末取出,若利率為10%,問相當(dāng)于現(xiàn)在存入多少錢?()A、6649.69元B、7315元C、12290元D、9736元
2000*(P/A,10%,7)(P/F,10%,3)=2000*4.8684*0.7513=7315資金時間價值練習(xí)1、某人從第四年開始每年末存入2000元,連資金時間價值練習(xí)
3、A方案在三年中每年年初付款100元,B方案在三年中每年年末付款100元,若年利率為10%,則二者之間在第三年末時的終值之差為()元。A、31.3B、131.3C、133.1D、33.1A(F/A,I,N)(1+I)-A(F/A,I,N)=100*10%*3.31=33.1資金時間價值練習(xí)
3、A方案在三年中每年年初付款100元,B資金時間價值練習(xí)4、某企業(yè)年初借得50000元貸款,10年期,年利率12%,每年年末等額償還。已知年金現(xiàn)值系數(shù)(P/A,12%,10)=5.6502,則每年應(yīng)付金額為()元。A、8849B、5000C、6000D、28251A=50000/5.6502=8849資金時間價值練習(xí)4、某企業(yè)年初借得50000元貸款,10年期資金時間價值練習(xí)5、在下列各項年金中,只有現(xiàn)值沒有終值的年金是()A、普通年金B(yǎng)、即付年金C、永續(xù)年金D、先付年金6.某人擬存入一筆資金以備3年后使用.他三年后所需資金總額為34500元,假定銀行3年存款利率為5%,在單利計息情況下,目前需存入的資金為()元.A.30000B.29803.04C.32857.14D.31500cA資金時間價值練習(xí)5、在下列各項年金中,只有現(xiàn)值沒有終值的年金資金時間價值練習(xí)8、以下不屬于年金收付方式的有()。A.分期付款B.發(fā)放養(yǎng)老金C.開出支票足額支付購入的設(shè)備款D.每年的銷售收入水平相同c資金時間價值練習(xí)8、以下不屬于年金收付方式的有(9、不影響遞延年金的終值計算的因素有()。A.期限B.利率C.遞延期D.年金數(shù)額c9、不影響遞延年金的終值計算的因素有11.已知(F/A,10%,9)=13.579,(F/A,10%,11)=18.531,10年期,利率為10%的即付年金終值系數(shù)值為。A.17.531B.15.937C.14.579D.12.579
[答案]A[解析]即付年金終值系數(shù)是在普通年金終值系數(shù)的基礎(chǔ)上“期數(shù)加1,系數(shù)減1”,所以,10年期,利率為10%的即付年金終值系數(shù)=(F/A,10%,11)-1=18.531-1=17.531。
11.已知(F/A,10%,9)=13.579,(F/A,1
12、某人將在未來三年中,每年從企業(yè)取得一次性勞務(wù)報酬10000元,若該企業(yè)支付給其的報酬時間既可在每年的年初,也可在每年的年末,若利率為10%,兩者支付時間上的差異,使某人的三年收入折算為現(xiàn)值相差()元。A、2512B、2487C、2382D、2375=10000*(P/A,10%,3)*10%=1000*2.4869=248712、某人將在未來三年中,每年從企業(yè)取得一次性勞務(wù)報酬資金時間價值練習(xí)二、多選題:1、遞延年金具有下列特點()。A、第一期沒有收支額B、其終值大小與遞延期長短有關(guān)C、其現(xiàn)值大小與遞延期長短有關(guān)D、計算現(xiàn)值的方法與普通年金相同資金時間價值練習(xí)二、多選題:資金時間價值練習(xí)2、在()情況下,實際利率等于名義利率。
A.單利
B.復(fù)利
C.每年復(fù)利計息次數(shù)為一次
D.每年復(fù)利計息次數(shù)大于一次資金時間價值練習(xí)2、在()情況下,實際利率等于名義利3.在下列各項中,可以直接或間接利用普通年金終值系數(shù)計算出確切結(jié)果的項目有().A.償債基金B(yǎng).預(yù)付年金終值
C.遞延年金終值D.永續(xù)年金終值3.在下列各項中,可以直接或間接利用普通年金終值系數(shù)計算出確資金時間價值練習(xí)三、判斷題:1、普通年金與先付年金的區(qū)別僅在于年金個數(shù)的不同。()2、資金時間價值是指在沒有風(fēng)險和沒有通貨膨脹條件下的社會平均資金利潤率。()3、在一年內(nèi)計息幾次時,實際利率要高于名義利率。()ftf資金時間價值練習(xí)三、判斷題:資金時間價值練習(xí)4、凡一定時期內(nèi)每期都有收款或付款的現(xiàn)金流量,均屬于年金問題。()5、在利率同為10%的情況下,第10年末的1元復(fù)利終值系數(shù)小于第11年初的1元復(fù)利終值系數(shù)。()6、銀行存款利率、貸款利率、各種債券利率、股票的股利率都可以看作是資金的時間價值率。()fff資金時間價值練習(xí)4、凡一定時期內(nèi)每期都有收款或付款的現(xiàn)金流量7、一項借款期為5年,年利率為8%的借款,若半年復(fù)利一次,其年實際利率會高出名義利率0.21%。()8、一般說來,資金時間價值是指沒有通貨膨脹條件下的投資報酬率。()9、有關(guān)資金時間價值指標(biāo)的計算過程中,普通年金現(xiàn)值與普通年金終值是互為逆運算的關(guān)系。10.名義利率指一年內(nèi)多次復(fù)利時給出的年利率,它等于每期利率與年內(nèi)復(fù)利次數(shù)的乘積。i=(1+8%/2)2-1=(1+4%)2-1=8.16%ffftr/m*m=r7、一項借款期為5年,年利率為8%的借款,若半年復(fù)利一次,其資金時間價值練習(xí)四、計算分析題:1、某人在5年后需用現(xiàn)金50000元,如果每年年年未存款一次,在利率為10%的情況下,此人每年未存現(xiàn)金多少元?若在每年初存入的話應(yīng)存入多少?50000=a*(F/A,10%,5)=a*(F/A,10%,6)-a=a*(F/A,10%,5)*(1+10%)2、某企業(yè)于第六年初開始每年等額支付一筆設(shè)備款項2萬元,連續(xù)支付5年,在利率為10%的情況下,若現(xiàn)在一次支付應(yīng)付多少?該設(shè)備在第10年末的總價又為多少?M=4,n=5,p=2*(P/A,10%,5)(P/F,10%,4)f=p(F/P,10%,10)資金時間價值練習(xí)四、計算分析題:資金時間價值練習(xí)4、甲銀行的年利率為8%,每季復(fù)利一次。要求:(1)計算甲銀行的實際利率。(2)乙銀行每月復(fù)利一次,若要與甲銀行的實際利率相等,則其年利率應(yīng)為多少?
5.某人年初存入銀行1000元,假設(shè)銀行按每年10%的復(fù)利計息,每年末取出200元,則最后一次能夠足額(200)提款的時間是哪年末?
i=(1+8%/4)4-1=0.08240.0824=(1+x/12)12-1X=(1.0066-1)*12=7.944%7資金時間價值練習(xí)4、甲銀行的年利率為8%,每季復(fù)利一次。要求6.擬購買一支股票,預(yù)期公司最近3年不發(fā)股利,預(yù)計從第4年開始每年支付0.2元股利,如果I=10%,則預(yù)期股票股利現(xiàn)值為多少?P3=0.2/10%=2P=2*(P/F,10%,3)=2*0.751=1.502(元)6.擬購買一支股票,預(yù)期公司最近3年不發(fā)股利,預(yù)計從第4年開第三節(jié)風(fēng)險報酬89討論你會選擇購買收益率為8%的一年期國庫券,還是會購買某家上市公司的普通股股票持有一年?第三節(jié)風(fēng)險報酬89討論你會選擇購買收益率為8%的一年期國第三節(jié)風(fēng)險報酬一、風(fēng)險報酬的概念(一)風(fēng)險定義
風(fēng)險是指在一定條件下和一定時期內(nèi)可能發(fā)生的各種結(jié)果的變動程度。(收益)報酬:是指從事某一種經(jīng)濟活動的所得。
※
收益為投資著提供了一種恰當(dāng)?shù)孛枋鐾顿Y項目財務(wù)績效的方式。
※
收益的大小通常用收益率衡量第三節(jié)風(fēng)險報酬一、風(fēng)險報酬的概念一、風(fēng)險報酬的概念公司的財務(wù)決策,幾乎都是在包含風(fēng)險和不確定性的情況下做出的。離開了風(fēng)險,就無法正確評價公司報酬的高低。
風(fēng)險越大,要求的必要報酬率越高一、風(fēng)險報酬的概念公司的財務(wù)決策,幾乎都是在包含風(fēng)險和不確定2、風(fēng)險分類1、從理財角度,分為市場風(fēng)險和企業(yè)特別風(fēng)險;2、從企業(yè)角度,分為經(jīng)營風(fēng)險和財務(wù)風(fēng)險;3、風(fēng)險衡量,風(fēng)險的衡量指標(biāo)只要有:期望值,標(biāo)準(zhǔn)差,標(biāo)準(zhǔn)離差率。2、風(fēng)險分類1、從理財角度,分為市場風(fēng)險和企業(yè)特別風(fēng)險;(二)風(fēng)險報酬的定義風(fēng)險報酬:是指投資者因冒險進行投資而獲得的超過時間價值的那部分額外的報酬。風(fēng)險報酬率:是指投資者冒險進行投資而獲得的超過時間價值的那部分額外的報酬率。期望投資報酬率=資金時間價值+風(fēng)險報酬率(二)風(fēng)險報酬的定義風(fēng)險報酬:是指投資者因冒險進行投資而獲得94風(fēng)險是客觀存在的,按風(fēng)險的程度,可以把公司的財務(wù)決策分為三種類型:
1.確定性決策:唯一結(jié)果,必然發(fā)生;
2.風(fēng)險性決策:多種結(jié)果,概率已知;
3.不確定性決策:多種結(jié)果,概率未知(風(fēng)險)(無風(fēng)險)94風(fēng)險是客觀存在的,按風(fēng)險的程度,可以把公司的財務(wù)二、風(fēng)險報酬的分類一、風(fēng)險報酬類型違約風(fēng)險報酬;流動性風(fēng)險報酬;期限風(fēng)險報酬;二、風(fēng)險報酬的分類一、風(fēng)險報酬類型(二)風(fēng)險報酬的計算風(fēng)險報酬兩種表示方法:1、風(fēng)險報酬額:所謂風(fēng)險報酬額是指投資者因冒風(fēng)險而獲得超時間價值的那部分額外報酬。2、風(fēng)險報酬率:是指投資者因冒風(fēng)險進行投資而超過時間價值率的那部分額外報酬率,即風(fēng)險報酬額與原報酬額的比率。(二)風(fēng)險報酬的計算風(fēng)險報酬兩種表示方法:(二)風(fēng)險報酬的計算對投資活動而言,風(fēng)險是與投資收益的可能性相聯(lián)系的,因此對風(fēng)險的衡量,就要從投資報酬率的可能性入手。1.確定概率分布2.計算預(yù)期收益率3.計算標(biāo)準(zhǔn)差4.利用歷史數(shù)據(jù)度量風(fēng)險5.計算變異系數(shù)6.風(fēng)險規(guī)避與必要收益(二)風(fēng)險報酬的計算對投資活動而言,風(fēng)險是與投資收益的可能性
衡量風(fēng)險的指標(biāo):1、期望值:反映預(yù)計收益的平均化,不能接用來衡量風(fēng)險;2、方差:期望值相同的情況下,方差越大,風(fēng)險越大;3、標(biāo)準(zhǔn)離差:期望值相同的情況下,標(biāo)準(zhǔn)離差越大,風(fēng)險越大;4、標(biāo)準(zhǔn)離差率:期望值不同的情況下,標(biāo)準(zhǔn)離差率越大,風(fēng)險越大。衡量風(fēng)險的指標(biāo):第二章-貨幣時間價值分析課件2.單項資產(chǎn)的風(fēng)險與收益100
從表中可以看出,市場需求旺盛的概率為30%,此時兩個項目都將獲得很高的收益率。市場需求正常的概率為40%,此時收益適中。而市場需求低迷的概率為30%,此時兩個項目都將獲得低收益,A項目甚至?xí)馐軗p失。1.確定概率分布經(jīng)濟狀況概率A項目B項目繁榮0.3100%20%正常0.415%15%衰退0.3-70%10%合計1——2.單項資產(chǎn)的風(fēng)險與收益100從表中可以看出,市場2.單項資產(chǎn)的風(fēng)險與收益1012.計算預(yù)期收益率:以概率作為權(quán)數(shù)的加權(quán)平均數(shù)經(jīng)濟狀況概率A項目B項目繁榮0.3100%20%正常0.415%15%衰退0.3-70%10%合計1——2.單項資產(chǎn)的風(fēng)險與收益1012.計算預(yù)期收益率:以概率作3.計算標(biāo)準(zhǔn)差(standarddeviation)
(1)計算預(yù)期收益率(3)計算方差(variance)
(2)計算離差(4)計算標(biāo)準(zhǔn)差
2.單項資產(chǎn)的風(fēng)險與收益兩個項目的標(biāo)準(zhǔn)差分別為多少?1023.計算標(biāo)準(zhǔn)差(standarddeviation)2經(jīng)濟狀況概率A項目B項目繁榮0.3100%20%正常0.415%15%衰退0.3-70%10%合計1——A項目投資風(fēng)險較大,大于B項目。2.單項資產(chǎn)的風(fēng)險與收益103經(jīng)濟狀況概率A項目B項目繁榮0.3100%20%正常0.412.單項資產(chǎn)的風(fēng)險與收益是指第t期所實現(xiàn)的收益率,是指過去n年內(nèi)獲得的平均年度收益率。1044.利用歷史數(shù)據(jù)度量風(fēng)險
已知過去一段時期內(nèi)的收益數(shù)據(jù),即歷史數(shù)據(jù),此時收益率的標(biāo)準(zhǔn)差可利用如下公式估算:2.單項資產(chǎn)的風(fēng)險與收益是指第t期所實現(xiàn)的收益率,1044.2.單項資產(chǎn)的風(fēng)險與收益變異系數(shù)度量了單位收益的風(fēng)險,為項目的選擇提供了更有意義的比較基礎(chǔ)。A項目的變異系數(shù)為65.84/15=4.39,而B項目的變異系數(shù)則為3.87/15=0.26??梢娨来藰?biāo)準(zhǔn),A項目的風(fēng)險約是B項目的17倍。1055.計算變異系數(shù)
如果有兩項投資:一項預(yù)期收益率較高而另一項標(biāo)準(zhǔn)差較低,投資者該如何抉擇呢?2.單項資產(chǎn)的風(fēng)險與收益變異系數(shù)度量了單位收2.單項資產(chǎn)的風(fēng)險與收益1066.風(fēng)險規(guī)避與必要收益
假設(shè)通過辛勤工作你積攢了10萬元,有兩個項目可以投資,第一個項目是購買利率為5%的短期國庫券,第一年末將能夠獲得確定的0.5萬元收益;第二個項目是購買A公司的股票。如果A公司的研發(fā)計劃進展順利,則你投入的10萬元將增值到21萬,然而,如果其研發(fā)失敗,股票價值將跌至0,你將血本無歸。如果預(yù)測A公司研發(fā)成功與失敗的概率各占50%,則股票投資的預(yù)期價值為0.5×0+0.5×21=10.5萬元??鄢?0萬元的初始投資成本,預(yù)期收益為0.5萬元,即預(yù)期收益率為5%。兩個項目的預(yù)期收益率一樣,選擇哪一個呢?只要是理性投資者,就會選擇第一個項目,表現(xiàn)出風(fēng)險規(guī)避。多數(shù)投資者都是風(fēng)險規(guī)避投資者。2.單項資產(chǎn)的風(fēng)險與收益1066.風(fēng)險規(guī)避與必要收益(二)風(fēng)險對策1.規(guī)避風(fēng)險當(dāng)風(fēng)險所造成的損失不能由該項目可能獲得利潤予以抵消時,避免風(fēng)險是最可行的簡單方法。2.減少風(fēng)險一是控制風(fēng)險因素,減少風(fēng)險的發(fā)生;二是控制風(fēng)險發(fā)生的頻率和降低風(fēng)險損害程度。3.轉(zhuǎn)移風(fēng)險企業(yè)以一定代價,采取某種方式,將風(fēng)險損失轉(zhuǎn)嫁給他人承擔(dān),以避免可能給企業(yè)帶來災(zāi)難性損失。4.接受風(fēng)險接受風(fēng)險包括風(fēng)險自擔(dān)和風(fēng)險自保兩種。(二)風(fēng)險對策(三)風(fēng)險偏好根據(jù)人們的效用函數(shù)的不同,可以按照其對風(fēng)險的偏好分為風(fēng)險回避者、風(fēng)險追求者和風(fēng)險中立者。(三)風(fēng)險偏好第二章-貨幣時間價值分析課件第二章財務(wù)管理的價值觀念第一節(jié)、貨幣的時間價值第二節(jié)、貨幣時間價值的計算第三節(jié)、風(fēng)險報酬第二章財務(wù)管理的價值觀念第一節(jié)、貨幣的時間價值時間價值的概念111
公元1797年,拿破侖參觀盧森堡大公國第一國立小學(xué)的時候,向該校贈送了一束價值3個金路易的玫瑰花。拿破侖宣稱,玫瑰花是兩國友誼的象征,為了表示法蘭西共和國愛好和平的誠意,只要法蘭西共和國存在一天,他將每年向該校贈送一束同樣價值的玫瑰花。當(dāng)然,由于年年征戰(zhàn),拿破侖并沒有履行他的諾言。但歷史前進的腳步一刻也不曾停息,轉(zhuǎn)眼間已是近一個世紀(jì)的時光。公元1984年,盧森堡王國鄭重向法國致函:要求法國政府在拿破侖的聲譽和1
375596法郎中,選擇其一,進行賠償。這就是著名的“玫瑰花懸案”而其中,這高達百萬法郎的巨款,就是3個金路易的本金(當(dāng)時,1金路易約等于20法郎)。
思考:為何每年贈送價值3路易的玫瑰花,在187年后卻相當(dāng)于要一次性支付1375596法郎?案例
時間價值的概念2公元1797年,拿破侖參觀盧第一節(jié)貨幣時間價值需要注意的問題:時間價值產(chǎn)生于生產(chǎn)流通領(lǐng)域,時間價值產(chǎn)生于資金運動之中時間價值的大小取決于資金周轉(zhuǎn)速度的快慢思考:1、將錢放在口袋里會產(chǎn)生時間價值嗎?2、停頓中的資金會產(chǎn)生時間價值嗎?3、企業(yè)加速資金的周轉(zhuǎn)會增值時間價值嗎?第一節(jié)貨幣時間價值需要注意的問題:例題引入一個男孩今年11歲,在他5歲生日時,收到一份外祖父送的禮物,這份禮物是以利率為5%的復(fù)利計息的10年到期、本金為4000元的債券形式提供的。男孩父母計劃在其19、20、21、22歲生日時,各用3000元資助他的大學(xué)學(xué)習(xí),為了實現(xiàn)這個計劃,外祖父的禮物債券到期后,其父母將其重新投資,除了這筆投資外,其父母在孩子12至18歲生日時,每年還需進行多少投資才能完成其資助孩子的教育計劃?設(shè)所有將來的投資利潤率均為6%。A=[3000(P/A,6%,4)-4000*(F/P,5%,10)(F/P,6%,3)]/(P/A,6%,7)例題引入一個男孩今年11歲,在他5歲生日時,收到一份外祖父送第一節(jié)貨幣時間價值一、貨幣的時間價值
(一)貨幣時間價值的概念是指貨幣隨著時間的推移而發(fā)生的增值,也稱資金時間價值。(貨幣資金經(jīng)歷一定時間的投資和再投資所增加的價值)
例如:將1元存入銀行,利息率是10%,一年后的,將會得到1.1元,那這0.1元的利息就是經(jīng)過一年的時間投資后的價值,利息就是貨幣時間價值。注:資金只有在投入生產(chǎn)經(jīng)營過程后才能產(chǎn)生時間價值。第一節(jié)貨幣時間價值一、貨幣的時間價值貨幣時間價值的實質(zhì)資金運動的全過程:G—W—G’G’=G+?GG代表貨幣W代表商品包含增值額在內(nèi)的全部價值是形成于生產(chǎn)過程的,其中增值部分是工人創(chuàng)造的剩余價值。時間價值的真正來源是工人創(chuàng)造的剩余價值。貨幣時間價值的實質(zhì)資金運動的全過程:G—W—G’G’=G+貨幣時間價值的表現(xiàn)形式1、相對數(shù):沒有風(fēng)險和沒有通貨膨脹條件下的社會平均資金利潤率;2、絕對數(shù):即時間價值額是資金在生產(chǎn)經(jīng)營過程中帶來的真實增值額,即一定數(shù)額的資金與時間價值率的乘積。貨幣時間價值的表現(xiàn)形式1、相對數(shù):沒有風(fēng)險和沒有通貨膨脹條件(二)現(xiàn)值和終值現(xiàn)值:
(presentvalue)是指未來某一時點上的一定量現(xiàn)金折合到現(xiàn)在的價值,俗稱"本金"。通常記作P終值:(futurevalue)又稱將來值或本利和,是指現(xiàn)在一定量的資金在未來某一時點上的價值。通常記作F(二)現(xiàn)值和終值現(xiàn)值:(presentvalue)二、貨幣時間價值的產(chǎn)生和意義1、貨幣時間價值是資源稀缺性的體現(xiàn)。2、貨幣時間價值是信用貨幣制度下,流通中貨幣的固有特征。3、貨幣時間價值是人們認(rèn)知心理的反映二、貨幣時間價值的產(chǎn)生和意義1、貨幣時間價值是資源稀缺性的體貨幣時間價值的意義1、是企業(yè)籌資決策的重要依據(jù)2、貨幣時間價值是企業(yè)投資決策的重要依據(jù)3、是企業(yè)經(jīng)營決策的重要依據(jù)貨幣時間價值的意義1、是企業(yè)籌資決策的重要依據(jù)第二節(jié)貨幣時間價值的計算1、一次性收付款項的終值與現(xiàn)值在某一特定時點上一次性支付(或收取),經(jīng)過一段時間后再相應(yīng)地一次性收?。ɑ蛑Ц叮┑目铐?,即為一次性收付款項。這種性質(zhì)的款項在日常生活中十分常見,如將10,000元錢存入銀行,一年后提出10,500元,這里所涉及的收付款項就屬于一次性收付款項。
現(xiàn)值(P)又稱本金,是指未來某一時點上的一定量現(xiàn)金折合為現(xiàn)在的價值。前例中的10,000元就是一年后的10,500元的現(xiàn)值。終值(F)又稱將來值,是現(xiàn)在一定量現(xiàn)金在未來某一時點上的價值,俗稱本利和。前例中的10,500元就是現(xiàn)在的10,000元在一年后的終值。
終值與現(xiàn)值的計算涉及到利息計算方式的選擇。目前有兩種利息計算方式,即單利和復(fù)利。第二節(jié)貨幣時間價值的計算1、一次性收付款項的終值與現(xiàn)值第二節(jié)貨幣時間價值的計算一、一次性收付款項資金現(xiàn)值與終值的計算(一)單利現(xiàn)值及終值計算單利:本金按年數(shù)計算利息,以前年度產(chǎn)生的利息不再計算利息。只是本金計算利息,所生利息均不加入本金計算利息的一種計息方法。第二節(jié)貨幣時間價值的計算一、一次性收付款項資金現(xiàn)值與終值的(一)單利現(xiàn)值及終值計算
單利:——只就借(貸)的原始金額或本金支付(收?。┑睦ⅰ喔髌诶⑹且粯拥?/p>
——涉及三個變量函數(shù):
原始金額或本金、
利率、
借款期限
(一)單利現(xiàn)值及終值計算
單利:(一)單利的終值與現(xiàn)值所謂單利計息方式,是指每期都按初始本金計算利息,當(dāng)期利息即使不取出也不計入下期本金。即,本生利,利不再生利。單利利息的計算I=P×i×n期數(shù)期初利息期末1PP*iP+Pi2P+PiP*iP+2Pi3P+2PiP*iP+3Pi…………nP+(n-1)PiP*iP+nPi(一)單利的終值與現(xiàn)值期數(shù)期初利息期末1PP*iP+Pi2P1、單利終值的計算單利終值:是指現(xiàn)在的一定量資金按單利計算的未來價值。
公式:F=p+I=p+pXiXn=p(1+ixn)i——利息p——本金F——單利終值i——利率n——期數(shù)
1、單利終值的計算單利終值:是指現(xiàn)在的一定量資金按單利計算的【例題】某人將100元存入銀行,年利率2%,求5年后的終值。
F=P×(1+i×n)=1OO+1OO×2%×5
=1OO×(1+5×2%)=110(元)
【例題】某人將100元存入銀行,年利率2%,求5年后的終值。例題企業(yè)年初將1000元存入銀行,存款期為3年,計息期1年,年利息率為5%。要求按單利計算到期本利和。F=PX(1+ixn)=1000x(1+3x5%)=1150例題企業(yè)年初將1000元存入銀行,存款期為3年,計息期1年,2、單利現(xiàn)值的計算單利現(xiàn)值:是指在未來某一時點上的一定量資金折合成現(xiàn)在的價值?,F(xiàn)值的計算與終值的計算是互逆的。
公式:p=F/(1+ixn)2、單利現(xiàn)值的計算單利現(xiàn)值:是指在未來某一時點上的一定量資金【例題】某人為了5年后能從銀行取出500元,在年利率2%的情況下,目前應(yīng)存入銀行的金額是多少?
P=F/(1+n×i)=500/(1+5×2%)≈454.55(元)【例題】某人為了5年后能從銀行取出500元,在年利率2%的情例題假設(shè)你希望在第五年末取得本利和1000元,用于支付一筆款項,利率為5%,按單利方式計算條件下,那么你現(xiàn)在需要存入銀行的金額為多少?P=F/(1+ixn)=1000/(1+5x5%)=800例題假設(shè)你希望在第五年末取得本利和1000元,用于支付一筆款結(jié)論:(1)單利的終值和單利的現(xiàn)值互為逆運算;(2)單利終值系數(shù)(1+
n×i
)和單利現(xiàn)值系數(shù)1/(1+
n×i)互為倒數(shù)。結(jié)論:例1:某人持有一張帶息票據(jù),面額為2000元,票面利率5%,出票日期為8月12日,到期日為11月10日(90天)。則該持有者到期可得利息為:I=2000×5%×90/360=25(元)
到期本息和為:
F=P*(1+i*n)=2000*(1+5%*90/360)=2025(元)除非特別指明,在計算利息時,給出的利率均為年利率例2某人存入銀行一筆錢,年利率為8%,想在1年后得到1000元,問現(xiàn)在應(yīng)存入多少錢?P=F/(1+i*n)=1000/(1+8%*1)=926(元)例1:某人持有一張帶息票據(jù),面額為2000元,票面利率5%,(二)復(fù)利的計算
復(fù)利是指不僅本金要計算利息,利息也要計算利息。俗稱:利滾利
“利滾利”:指每經(jīng)過一個計息期,要將所生利息加入到本金中再計算利息,逐期滾算。
計息期是指相鄰兩次計息的時間間隔,年、半年、季、月等,除特別指明外,計息期均為1年。(二)復(fù)利的計算
復(fù)利是指不僅本金要計算利息,利息也要計算11.復(fù)利計息方式如下:復(fù)利終值計算:F=P(1+i)n式中,(1+i)n稱為一元錢的終值,或復(fù)利終值系數(shù),記作:(F/P,i,n)。該系數(shù)可通過查表方式直接獲得。則:F=P(F/P,i,n)
期數(shù)期初利息期末1PP*iP(1+i)2P(1+i)P(1+i)*iP(1+i)23P(1+i)2P(1+i)2*iP(1+i)3
nP(1+i)n-1P(1+i)n-1*iP(1+i)n11.復(fù)利計息方式如下:期數(shù)期初利息期末1PP*iP(1+i
終值
又稱復(fù)利終值,是指若干期以后包括本金和利息在內(nèi)的未來價值。
FVn(F):FutureValue
復(fù)利終值
PV:
PresentValue
復(fù)利現(xiàn)值i:Interestrate利息率n:Number計息期數(shù)復(fù)利終值終值又稱復(fù)利終值,是指若干期以后包括本金和例:某人將20,000元存放于銀行,年存款利率為6%,在復(fù)利計息方式下,三年后的本利和為多少。FV=F=20,000(F/P,6%,3)經(jīng)查表得:(F/P,6%,3)=1.191FV=F=20,000×1.191=23,820例:某人將20,000元存放于銀行,年存款利率為6%,在復(fù)利例題某人將10000元投投資一項事業(yè),年報酬率為6%,按復(fù)利計算,經(jīng)過3年后的本利和是多少?F=P(1+i)n=F=P(F/P,i,n)
=10000x1.191=11910例題某人將10000元投投資一項事業(yè),年報酬率為6%,按復(fù)利2、復(fù)利現(xiàn)值復(fù)利現(xiàn)值是復(fù)利終值的對稱概念,指未來一定時間的特定資金按復(fù)利計算的現(xiàn)在價值,或者說是為取得將來一定本利和現(xiàn)在所需要的本金1)復(fù)利現(xiàn)值的特點是:貼現(xiàn)率越高,貼現(xiàn)期數(shù)越多,復(fù)利現(xiàn)值越小。2)P=F×(1+i)-n(1+i)-n復(fù)利現(xiàn)值系數(shù)或1元的復(fù)利現(xiàn)值,用(P/F,i,n)表示。2、復(fù)利現(xiàn)值復(fù)利現(xiàn)值是復(fù)利終值的對稱概念,指未來例5某人有18萬元,擬投入報酬率為8%的投資項目,經(jīng)過多少年才可使現(xiàn)有資金增長為原來的3.7倍?
F=180000*3.7=666000(元)F=180000*(1+8%)n666000=180000*(1+8%)n(1+8%)n=3.7(F/P,8%,n)=3.7
查”復(fù)利終值系數(shù)表”,在i=8%的項下尋找3.7,(F/P,8%,17)=3.7,所以:n=17,即17年后可使現(xiàn)有資金增加3倍.
例5某人有18萬元,擬投入報酬率為8%的投資項目,經(jīng)過多少例題某人要想在3年后得到1000元,銀行存款利率為8%,問現(xiàn)在應(yīng)存入多少錢?P=F/(1+i)n=1000x0.794=794(元)例題某人要想在3年后得到1000元,銀行存款利率為8%,問現(xiàn)復(fù)利終值和復(fù)利現(xiàn)值
由終值求現(xiàn)值,稱為貼現(xiàn),貼現(xiàn)時使用的利息率稱為貼現(xiàn)率。
2023/1/4
上式中的叫復(fù)利現(xiàn)值系數(shù)或貼現(xiàn)系數(shù),可以寫為,則復(fù)利現(xiàn)值的計算公式可寫為:復(fù)利終值和復(fù)利現(xiàn)值由終值求現(xiàn)值,稱為貼現(xiàn)三、名義利率和實際利率名義利率:是指當(dāng)利息在一年內(nèi)要復(fù)利幾次時給出的年利率,而將相當(dāng)于一年復(fù)利一次的利率叫實際利率。名義利率和實際利率的換算公式:i=(1+r/m)^m-1例:年利率為12%,按季度復(fù)利計息,則實際利率為多少?i=(1+12%/4)^4-1=12.55%三、名義利率和實際利率名義利率:是指當(dāng)利息在一年內(nèi)要復(fù)利幾次四、年金年金是指一定時期內(nèi)等額、定期的系列收付款項。比如:每月支付租金、分期付款賒購、分期償還貸款、分期支付工程款等;(普通)年金的終值和現(xiàn)值即付年金的終值和現(xiàn)值先付年金的終值和現(xiàn)值延期年金現(xiàn)值的計算永續(xù)年金現(xiàn)值的計算四、年金年金是指一定時期內(nèi)等額、定期的系列收付款項。2.1.4年金終值和現(xiàn)值普通年金(后付年金)——指一定時期每期期末有等額收付款項的年金。普通年金終值的計算公式:143※普通年金(ordinaryannuity)的終值和現(xiàn)值的計算
或者說是一定時期內(nèi)每期期末等額收付款項的復(fù)利終值之和F。2.1.4年金終值和現(xiàn)值普通年金(后付年金)普通年金終值的2.1.4年金終值和現(xiàn)值A(chǔ)代表年金數(shù)額;i代表利息率;n代表計息期數(shù);144※后付年金的終值2.1.4年金終值和現(xiàn)值A(chǔ)代表年金數(shù)額;35※后付年金第二章-貨幣時間價值分析課件式中:
稱為“一元年金的終值”或“年金終值系數(shù)”,記作:(F/A,i,n)。該系數(shù)可通過查表獲得,則:
F=A(F/A,i,n)例8:某人每年年末存入銀行100元,若年率為10%,則第5年末可從銀行一次性取出多少錢?F=100(F/A,10%,5)查表得:(F/A,10%,5)=6.1051F=100×6.1051=610.51(元)式中:
:FVAn:Annuityfuturevalue
年金終值
A:Annuity
年金數(shù)額
i:Interestrate
利息率
n:Number
計息期數(shù)可通過查年金終值系數(shù)表求得F==A*(F/A,i,n)(F/A,i,n):FVAn:Annuityfuturevalue例題某人從30歲起每年末存入8000元,連續(xù)十年,銀行利率8%,問10年后能取多少本利和?
F=A(F/A,i,n)=8000x14.487=115896例題某人從30歲起每年末存入8000元,連續(xù)十年,銀行利率8某人為失學(xué)兒童進行九年義務(wù)教育捐獻,每年捐獻1000元,銀行利率為2%,問九年后相當(dāng)于捐獻多少錢?某人為失學(xué)兒童進行九年義務(wù)教育捐獻,每年捐獻1000元,銀行(二)年償債基金的計算償債基金,是指為了在約定的未來某一時點清償某筆債務(wù)或積聚一定數(shù)額的資金而必須分次等額形成的存款準(zhǔn)備金。年償債基金的計算實際上是年金終值的逆運算,其計算公式為:
式中的分式稱作“償債基金系數(shù)”,記作(A/F,i,n)。該系數(shù)可通過查“償債基金系數(shù)表”獲得,或通過年金終值系數(shù)的倒數(shù)推算出來。所以:A=F(A/F,i,n)或A=F/(F/A,i,n)(二)年償債基金的計算例:假設(shè)某企業(yè)有一筆4年后到期的借款,到期值為1000萬
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鋼制門招標(biāo)文件的簡明和易懂性
- 清潔合同物業(yè)保潔
- 池河鎮(zhèn)七年級歷史下冊 第三單元 明清時期:統(tǒng)一多民族國家的鞏固與發(fā)展 第20課 清朝君主專制的強化教案 新人教版
- 2024年九年級語文上冊 第四單元 詩詞誦讀《水調(diào)歌頭》教案 鄂教版
- 八年級英語上冊 Unit 5 My Future Lesson 26 What Will I Be教案 (新版)冀教版
- 2024年學(xué)年八年級道德與法治下冊 第二單元 理解權(quán)利義務(wù)教案 新人教版
- 江蘇省江陰市高中生物 第三章 細(xì)胞的基本結(jié)構(gòu) 3.1 細(xì)胞膜-系統(tǒng)的邊界教案 新人教版必修1
- 鉆孔機租賃合同(2篇)
- 租車退車合同(2篇)
- 蘇教版音樂課件
- 2019新人教必修1unit2Travelling-Around整單元完整教案
- 大學(xué)生辯論賽評分標(biāo)準(zhǔn)表
- 診所污水污物糞便處理方案及周邊環(huán)境
- 江蘇開放大學(xué)2023年秋《馬克思主義基本原理 060111》形成性考核作業(yè)2-實踐性環(huán)節(jié)(占過程性考核成績的30%)參考答案
- 《我是班級的主人翁》的主題班會
- 初中英語課外閱讀Treasure+Island黑布林閱讀
- 酒店安全設(shè)施及安全制度
- 近代化的早期探索與民族危機的加劇 單元作業(yè)設(shè)計
- 租賃機械設(shè)備施工方案
- 急救物品檢查表
- 屋面融雪系統(tǒng)施工方案
評論
0/150
提交評論