版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.在Rt△ABC中,∠C=90°,各邊都擴大2倍,則銳角A的銳角三角函數(shù)值()A.擴大2倍 B.縮小 C.不變 D.無法確定2.某個幾何體的三視圖如圖所示,該幾何體是()A. B. C. D.3.如圖,在平面直角坐標系中拋物線y=(x+1)(x﹣3)與x軸相交于A、B兩點,若在拋物線上有且只有三個不同的點C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面積都等于m,則m的值是()A.6 B.8 C.12 D.164.如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為()A. B. C. D.5.如圖,AB為圓O直徑,C、D是圓上兩點,ADC=110°,則OCB度()A.40 B.50 C.60 D.706.已知點P的坐標為(3,-5),則點P關于原點的對稱點的坐標可表示為()A.(3,5) B.(-3,5) C.(3,-5) D.(-3,-5)7.拋物線經(jīng)過平移得到拋物線,平移的方法是()A.向左平移1個單位,再向下平移2個單位B.向右平移1個單位,再向下平移2個單位C.向左平移1個單位,再向上平移2個單位D.向右平移1個單位,再向上平移2個單位8.如圖,矩形的邊在軸的正半軸上,點的坐標為,反比例函數(shù)的圖象經(jīng)過矩形對角線的交點,則的值是()A.8 B.4 C.2 D.19.關于的一元二次方程有一個根是﹣1,若二次函數(shù)的圖象的頂點在第一象限,設,則的取值范圍是()A. B. C. D.10.時鐘上的分針勻速旋轉一周需要60分鐘,則經(jīng)過10分鐘,分針旋轉了().A.10° B.20° C.30° D.60°11.如圖,在矩形中,于F,則線段的長是()A. B. C. D.12.如圖,等腰與等腰是以點為位似中心的位似圖形,位似比為,則點的坐標是()A. B. C. D.二、填空題(每題4分,共24分)13.某十字路口的交通信號燈每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當你抬頭看信號燈時,是綠燈的概率為____.14.拋物線y=(x+2)2-2的頂點坐標是________.15.如圖,在平面直角坐標系中,?ABCD的頂點B,C在x軸上,A,D兩點分別在反比例函數(shù)y=﹣(x<0)與y=(x>0)的圖象上,若?ABCD的面積為4,則k的值為:_____.16.如圖,邊長為3的正六邊形內接于,則圖中陰影部分的面積和為_________(結果保留).17.如圖,在網(wǎng)格中,小正方形的邊長均為1,點A、B、O都在格點上,則∠OAB的正弦值是_____.18.若m是方程5x2﹣3x﹣1=0的一個根,則15m﹣+2010的值為_____.三、解答題(共78分)19.(8分)小穎和小紅兩位同學在學習“概率”時,做投擲骰子(質地均勻的正方體)實驗,他們共做了60次實驗,實驗的結果如下:朝上的點數(shù)123456出現(xiàn)的次數(shù)79682010(1)計算“3點朝上”的頻率和“5點朝上”的頻率.(2)小穎說:“根據(jù)實驗,一次實驗中出現(xiàn)5點朝上的概率最大”;小紅說:“如果投擲600次,那么出現(xiàn)6點朝上的次數(shù)正好是100次”,小穎和小紅的說法正確嗎?為什么?(3)小穎和小紅各投擲一枚骰子,用列表或畫樹狀圖的方法求出兩枚骰子朝上的點數(shù)之和為3的倍數(shù)的概率.20.(8分)如圖,有長為14m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬AB為xm,面積為Sm1.(1)求S與x的函數(shù)關系式及x值的取值范圍;(1)要圍成面積為45m1的花圃,AB的長是多少米?(3)當AB的長是多少米時,圍成的花圃的面積最大?21.(8分)快樂的寒假臨近啦!小明和小麗計劃在寒假期間去鎮(zhèn)江旅游.他們選取金山(記為)、焦山(記為)、北固山(記為)這三個景點為游玩目標.如果他們各自在三個景點中任選一個作為游玩的第一站(每個景點被選為第一站的可能性相同),請用“畫樹狀圖”或“列表”的方法求他倆都選擇金山為第一站的概率.22.(10分)若邊長為6的正方形ABCD繞點A順時針旋轉,得正方形AB′C′D′,記旋轉角為a.(I)如圖1,當a=60°時,求點C經(jīng)過的弧的長度和線段AC掃過的扇形面積;(Ⅱ)如圖2,當a=45°時,BC與D′C′的交點為E,求線段D′E的長度;(Ⅲ)如圖3,在旋轉過程中,若F為線段CB′的中點,求線段DF長度的取值范圍.23.(10分)某單位800名職工積極參加向貧困地區(qū)學校捐書活動,為了解職工的捐書數(shù)量,采用隨機抽樣的方法抽取30名職工的捐書數(shù)量作為樣本,對他們的捐書數(shù)量進行統(tǒng)計,統(tǒng)計結果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計圖,由圖中給出的信息解答下列問題:(1)補全條形統(tǒng)計圖;(2)求這30名職工捐書本數(shù)的平均數(shù),寫出眾數(shù)和中位數(shù);(3)估計該單位800名職工共捐書多少本?24.(10分)如圖,A,B,C三點的坐標分別為A(1,0),B(4,3),C(5,0),試在原圖上畫出以點A為位似中心,把△ABC各邊長縮小為原來的一半的圖形,并寫出各頂點的坐標.25.(12分)其中A代表湘江源,B代表百疊嶺,C代表塔下寺,D代表三分石.(1)請你設計一種較好的方式(統(tǒng)計圖),表示以上數(shù)據(jù);(2)同學們最喜歡去的地點是哪里?26.某服裝超市購進單價為30元的童裝若干件,物價部門規(guī)定其銷售單價不低于每件30元,不高于每件60元.銷售一段時間后發(fā)現(xiàn):當銷售單價為60元時,平均每月銷售量為80件,而當銷售單價每降低10元時,平均每月能多售出20件.同時,在銷售過程中,每月還要支付其他費用450元.設銷售單價為x元,平均月銷售量為y件.(1)求出y與x的函數(shù)關系式,并寫出自變量x的取值范圍.(2)當銷售單價為多少元時,銷售這種童裝每月可獲利1800元?(3)當銷售單價為多少元時,銷售這種童裝每月獲得利潤最大?最大利潤是多少?
參考答案一、選擇題(每題4分,共48分)1、C【解析】∵在Rt△ABC中,∠C=90°,∴,,,∴在Rt△ABC中,各邊都擴大2倍得:,,,故在Rt△ABC中,各邊都擴大2倍,則銳角A的銳角三角函數(shù)值不變.故選C.【點睛】本題考查了銳角三角函數(shù),根據(jù)銳角三角函數(shù)的概念:銳角A的各個三角函數(shù)值等于直角三角形的邊的比值可知,三角形的各邊都擴大(縮小)多少倍,銳角A的三角函數(shù)值是不會變的.2、D【解析】根據(jù)幾何體的三視圖判斷即可.【詳解】由三視圖可知:該幾何體為圓錐.故選D.【點睛】考查了由三視圖判斷幾何體的知識,解題的關鍵是具有較強的空間想象能力,難度不大.3、B【分析】根據(jù)題目中的函數(shù)解析式可以求得該拋物線與x軸的交點坐標和頂點的坐標,再根據(jù)在拋物線上有且只有三個不同的點C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面積都等于m,可知其中一點一定在頂點處,從而可以求得m的值.【詳解】∵拋物線y=(x+1)(x-3)與x軸相交于A、B兩點,∴點A(-1,0),點B(3,0),該拋物線的對稱軸是直線x==1,∴AB=3-(-1)=4,該拋物線頂點的縱坐標是:y=(1+1)×(1-3)=-4,∵在拋物線上有且只有三個不同的點C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面積都等于m,∴m==8,故選B.【點睛】本題考查拋物線與x軸的交點、二次函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,利用二次函數(shù)的性質和數(shù)形結合的思想解答.4、D【分析】連接BD,BE,BO,EO,先根據(jù)B、E是半圓弧的三等分點求出圓心角∠BOD的度數(shù),再利用弧長公式求出半圓的半徑R,再利用圓周角定理求出各邊長,通過轉化將陰影部分的面積轉化為S△ABC﹣S扇形BOE,然后分別求出面積相減即可得出答案.【詳解】解:連接BD,BE,BO,EO,∵B,E是半圓弧的三等分點,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的長為,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面積相等,∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE=故選:D.【點睛】本題主要考查弧長公式,扇形面積公式,圓周角定理等,掌握圓的相關性質是解題的關鍵.5、D【分析】根據(jù)角的度數(shù)推出弧的度數(shù),再利用外角∠AOC的性質即可解題.【詳解】解:∵ADC=110°,即優(yōu)弧的度數(shù)是220°,∴劣弧的度數(shù)是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=∠AOC=70°,故選D.【點睛】本題考查圓周角定理、外角的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.6、B【分析】由題意根據(jù)關于原點對稱點的坐標特征即點的橫縱坐標都互為相反數(shù)即可得出答案.【詳解】解:點P的坐標為(3,-5)關于原點中心對稱的點的坐標是(-3,5),故選:B.【點睛】本題考查點關于原點對稱的點,掌握關于原點對稱點的坐標特征即橫縱坐標都互為相反數(shù)是解題的關鍵.7、D【解析】∵拋物線y=-3(x+1)2-2的頂點坐標為(-1,-2),平移后拋物線y=-3x2的頂點坐標為(0,0),∴平移方法為:向右平移1個單位,再向上平移2個單位.故選D.8、C【分析】根據(jù)矩形的性質求出點P的坐標,將點P的坐標代入中,求出的值即可.【詳解】∵點P是矩形的對角線的交點,點的坐標為∴點P將點P代入中解得故答案為:C.【點睛】本題考查了矩形的性質以及反比例函數(shù)的性質,掌握代入求值法求出的值是解題的關鍵.9、D【分析】二次函數(shù)的圖象過點,則,而,則,,二次函數(shù)的圖象的頂點在第一象限,則,,即可求解.【詳解】∵關于的一元二次方程有一個根是﹣1,∴二次函數(shù)的圖象過點,∴,∴,,則,,∵二次函數(shù)的圖象的頂點在第一象限,∴,,將,代入上式得:,解得:,,解得:或,故:,故選D.【點睛】主要考查圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的范圍求與的關系,以及二次函數(shù)與方程之間的轉換,根的判別式的熟練運用10、D【分析】先求出時鐘上的分針勻速旋轉一分鐘時的度數(shù)為6°,再求10分鐘分針旋轉的度數(shù)就簡單了.【詳解】解:∵時鐘上的分針勻速旋轉一周的度數(shù)為360°,時鐘上的分針勻速旋轉一周需要60分鐘,則時鐘上的分針勻速旋轉一分鐘時的度數(shù)為:360÷60=6°,那么10分鐘,分針旋轉了10×6°=60°,故選:D.【點睛】本題考查了生活中的旋轉現(xiàn)象,明確分針旋轉一周,分針旋轉了360°,所以時鐘上的分針勻速旋轉一分鐘時的度數(shù),是解答本題的關鍵.11、C【分析】根據(jù)矩形的性質和勾股定理求出,再由面積法求出的長即可.【詳解】解:四邊形是矩形,,,,的面積,;故選:.【點睛】本題考查了矩形的性質、勾股定理、直角三角形的面積,熟練掌握矩形的性質,熟記直角三角形的面積求法是解題的關鍵.12、A【分析】根據(jù)位似比為,可得,從而得:CE=DE=12,進而求得OC=6,即可求解.【詳解】∵等腰與等腰是以點為位似中心的位似圖形,位似比為,∴,即:DE=3BC=12,∴CE=DE=12,∴,解得:OC=6,∴OE=6+12=18,∴點的坐標是:.故選A.【點睛】本題主要考查位似圖形的性質,掌握位似圖形的位似比等于相似比,是解題的關鍵.二、填空題(每題4分,共24分)13、【分析】隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)÷所有可能出現(xiàn)的結果數(shù),據(jù)此用綠燈亮的時間除以三種燈亮的總時間,求出抬頭看信號燈時,是綠燈的概率為多少即可.【詳解】抬頭看信號燈時,是綠燈的概率為.故答案為.【點睛】此題主要考查了概率公式的應用,要熟練掌握,解答此題的關鍵是要明確:(1)隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)÷所有可能出現(xiàn)的結果數(shù).(2)P(必然事件)=1.(3)P(不可能事件)=2.14、(-2,-2)【分析】由題意直接利用頂點式的特點,即可求出拋物線的頂點坐標.【詳解】解:∵y=(x+2)2-2是拋物線的頂點式,∴拋物線的頂點坐標為(-2,-2).故答案為:(-2,-2).【點睛】本題主要考查的是二次函數(shù)的性質,掌握二次函數(shù)頂點式的特征是解題的關鍵.15、2【分析】連接OA、OD,如圖,利用平行四邊形的性質得AD垂直y軸,則利用反比例函數(shù)的比例系數(shù)k的幾何意義得到S△OAE和S△ODE,所以S△OAD=+,,然后根據(jù)平行四邊形的面積公式可得到?ABCD的面積=2S△OAD=2,即可求出k的值.【詳解】連接OA、OD,如圖,∵四邊形ABCD為平行四邊形,∴AD垂直y軸,∴S△OAE=×|﹣3|=,S△ODE=×|k|,∴S△OAD=+,∵?ABCD的面積=2S△OAD=2.∴3+|k|=2,∵k>0,解得k=2,故答案為2.【點睛】此題考查平行四邊形的性質、反比例函數(shù)的性質,反比例函數(shù)圖形上任意一點向兩個坐標軸作垂線構成的矩形面積等于,再與原點連線分矩形為兩個三角形,面積等于.16、【分析】將陰影部分合并即可得到扇形的面積,利用扇形面積公式計算即可.【詳解】∵ABCDEF是正六邊形,∴∠AOE=120°,陰影部分的面積和=.故答案為:.【點睛】本題考查扇形面積計算,關鍵在于記住扇形的面積公式.17、【解析】如圖,過點O作OC⊥AB的延長線于點C,則AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案為.18、1【分析】根據(jù)m是方程5x2﹣3x﹣1=0的一個根代入得到5m2﹣3m﹣1=0,進一步得到5m2﹣1=3m,兩邊同時除以m得:5m﹣=3,然后整體代入即可求得答案.【詳解】解:∵m是方程5x2﹣3x﹣1=0的一個根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,兩邊同時除以m得:5m﹣=3,∴15m﹣+2010=3(5m﹣)+2010=9+2010=1,故答案為:1.【點睛】本題考查了一元二次方程的根,靈活的進行代數(shù)式的變形是解題的關鍵.三、解答題(共78分)19、(1)0.1;(2)小穎的說法是錯誤的,理由見解析(3)列表見詳解;【分析】(1)根據(jù)頻率等于頻數(shù)除以總數(shù),即可分別求出“3點朝上”的頻率和“5點朝上”的頻率.(2)頻率不等于概率,只能估算概率,故小穎的說法不對,事件發(fā)生具有隨機性,故得知小紅的說法也不對.(3)列表,找出點數(shù)之和是3的倍數(shù)的結果,除以總的結果,即可解決.【詳解】解:(1)“3點朝上”的頻率:6÷60=0.1“5點朝上”的頻率:20÷60=.(2)小穎的說法是錯誤的,因為“5點朝上”的頻率最大并不能說明5點朝上的概率最大,頻率不等于概率;小紅的說法是錯誤的,因為事件發(fā)生具有隨機性,故“點朝上”的次數(shù)不一定是100次.(3)列表如下:共有36種情況,點數(shù)之和為3的倍數(shù)的情況有12種.故P(點數(shù)之和為3的倍數(shù))==.【點睛】本題主要考查了頻率的公式、頻率與概率的關系以及列表法和樹狀圖法求概率,能夠熟練其概念以及準確的列表是解決本題的關鍵.20、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【分析】(1)設花圃寬AB為xm,則長為(14-3x),利用長方形的面積公式,可求出S與x關系式,根據(jù)墻的最大長度求出x的取值范圍;(1)根據(jù)(1)所求的關系式把S=2代入即可求出x,即AB;(3)根據(jù)二次函數(shù)的性質及x的取值范圍求出即可.【詳解】解:(1)根據(jù)題意,得S=x(14﹣3x),即所求的函數(shù)解析式為:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴;(1)根據(jù)題意,設花圃寬AB為xm,則長為(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,當x=3時,長=14﹣9=15>10不成立,當x=5時,長=14﹣15=9<10成立,∴AB長為5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墻的最大可用長度為10m,0≤14﹣3x≤10,∴,∵對稱軸x=4,開口向下,∴當x=m,有最大面積的花圃.【點睛】二次函數(shù)在實際生活中的應用是本題的考點,根據(jù)題目給出的條件,找出合適的等量關系,列出方程是解題的關鍵.21、“畫樹狀圖”或“列表”見解析;(都選金山為第一站).【分析】畫樹形圖得出所有等可能的情況數(shù),找出小明和小麗都選金山為第一站的情況數(shù),即可求出所求的概率.【詳解】畫樹狀圖得:
∵共有9種等可能的結果,小明和小麗都選金山為第一站的只有1種情況,
∴(都選金山為第一站).【點睛】本題考查的是用列表法或樹狀圖法求概率.樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、(I)12π;(Ⅱ)D′E=6﹣6;(Ⅲ)1﹣1≤DF≤1+1.【分析】(Ⅰ)根據(jù)正方形的性質得到AD=CD=6,∠D=90°,由勾股定理得到AC=6,根據(jù)弧長的計算公式和扇形的面積公式即可得到結論;(Ⅱ)連接BC′,根據(jù)題意得到B在對角線AC′上,根據(jù)勾股定理得到AC′==6,求得BC′=6﹣6,推出△BC′E是等腰直角三角形,得到C′E=BC′=12﹣6,于是得到結論;(Ⅲ)如圖1,連接DB,AC相交于點O,則O是DB的中點,根據(jù)三角形中位線定理得到FO=AB′=1,推出F在以O為圓心,1為半徑的圓上運動,于是得到結論.【詳解】解:(Ⅰ)∵四邊形ABCD是正方形,∴AD=CD=6,∠D=90°,∴AC=6,∵邊長為6的正方形ABCD繞點A順時針旋轉,得正方形AB′C′D′,∴∠CAC′=60°,∴的長度==2π,線段AC掃過的扇形面積==12π;(Ⅱ)解:如圖2,連接BC′,∵旋轉角∠BAB′=45°,∠BAD′=45°,∴B在對角線AC′上,∵B′C′=AB′=6,在Rt△AB′C′中,AC′==6,∴BC′=6﹣6,∵∠C′BE=180°﹣∠ABC=90°,∠BC′E=90°﹣45°=45°,∴△BC′E是等腰直角三角形,∴C′E=BC′=12﹣6,∴D′E=C′D′﹣EC′=6﹣(12﹣6)=6﹣6;(Ⅲ)如圖1,連接DB,AC相交于點O,則O是DB的中點,∵F為線段BC′的中點,∴FO=AB′=1,∴F在以O為圓心,1為半徑的圓上運動,∵DO=1,∴DF最大值為1+1,DF的最小值為1﹣1,∴DF長的取值范圍為1﹣1≤DF≤1+1.【點睛】本題考查了旋轉的綜合題,正方形性質,全等三角形判定與性質,三角形中位線定理.(Ⅲ)問解題的關鍵是利用中位線定理得出點P的軌跡.23、(1)補全圖形見解析;(2)平均數(shù)是6本,眾數(shù)是6本,中位數(shù)是6本.(3)該單位800名職工共捐書有4800本.【分析】(1)根據(jù)總數(shù)和統(tǒng)計數(shù)據(jù)求解即可;(2)根據(jù)平均數(shù),眾數(shù)和中位數(shù)定義公式求解即可;(3)根據(jù)已知平均數(shù)乘以員工總數(shù)求解即可.【詳解】解:(1)D組人數(shù)=30﹣4﹣6﹣9﹣3=8人,補圖如下:.(2)平均數(shù)是:=6(本),眾數(shù)是6本,中位數(shù)是6本.(3)∵平均數(shù)是6本,∴該單位800名職工共捐書有6×800=4800本.【點睛】本題主要考查了數(shù)據(jù)統(tǒng)計中的平均數(shù),眾數(shù)和中位數(shù)的問題,熟練掌握其定義與計算公式是解答關鍵.24、各頂點坐標分別為A(1,0),B′(2.5,1.5),C′(3,0)或A(1,0),B″(-0.5,-1.5),C″(-1,0).【解析】根據(jù)題意,分別從AB,AC上截取它的一半找到對應點即可.【詳解】如答圖所示,△AB′C′,△AB″C″即是所求的三角形(畫出一種即可).各頂點坐標分別為A(1,0),B′(2.5,1.5),C′(3,0)或A(1,0),B″
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年版在線教育平臺合作開發(fā)合同4篇
- 2025年度醫(yī)療衛(wèi)生機構專業(yè)技術人員聘用合同4篇
- 二零二五年度殯葬服務與社區(qū)養(yǎng)老服務對接合同3篇
- 2025年度農副產品線上線下銷售與物流一體化服務合同3篇
- 二零二五年度投資收益分成合同
- 2025版高端定制門窗工程承攬合同3篇
- 2025年度企業(yè)會計人員專項聘用合同范本
- 2025年度票據(jù)質押資產證券化專項合同4篇
- 二零二五年度戶外木制品加工承包合同2篇
- 2025年度面粉行業(yè)二零二五年度面粉產品追溯體系共建合同3篇
- 江蘇省蘇州市2024-2025學年高三上學期1月期末生物試題(有答案)
- 銷售與銷售目標管理制度
- 人教版(2025新版)七年級下冊英語:寒假課內預習重點知識默寫練習
- 2024年食品行業(yè)員工勞動合同標準文本
- 2025年第一次工地開工會議主要議程開工大吉模板
- 全屋整裝售后保修合同模板
- 高中生物學科學推理能力測試
- GB/T 44423-2024近紅外腦功能康復評估設備通用要求
- 2024-2030年中國減肥行業(yè)市場發(fā)展分析及發(fā)展趨勢與投資研究報告
- 運動技能學習
- 單側雙通道內鏡下腰椎間盤摘除術手術護理配合1
評論
0/150
提交評論