




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,從一塊直徑為24cm的圓形紙片上,剪出一個圓心角為90°的扇形ABC,使點A,B,C都在圓周上,將剪下的扇形圍成一個圓錐的側(cè)面,則這個圓錐的底面圓的半徑是()A.3cm B.2cm C.6cm D.12cm2.《九章算術(shù)》總共收集了246個數(shù)學(xué)問題,這些算法要比歐洲同類算法早1500多年,對中國及世界數(shù)學(xué)發(fā)展產(chǎn)生過重要影響.在《九章算術(shù)》中有很多名題,下面就是其中的一道.原文:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”翻譯:如圖,為的直徑,弦于點.寸,寸,則可得直徑的長為()A.13寸 B.26寸C.18寸 D.24寸3.如圖,點A、B、C在⊙O上,∠A=50°,則∠BOC的度數(shù)為()A.130° B.50° C.65° D.100°4.如圖,已知.按照以下步驟作圖:①以點為圓心,以適當?shù)拈L為半徑作弧,分別交的兩邊于,兩點,連接.②分別以點,為圓心,以大于線段的長為半徑作弧,兩弧在內(nèi)交于點,連接,.③連接交于點.下列結(jié)論中錯誤的是()A. B.C. D.5.關(guān)于x的一元二次方程x2+ax﹣1=0的根的情況是()A.沒有實數(shù)根 B.只有一個實數(shù)根C.有兩個相等的實數(shù)根 D.有兩個不相等的實數(shù)根6.如圖,在平面直角坐標系中,正方形ABCD頂點B(﹣1,﹣1),C在x軸正半軸上,A在第二象限雙曲線y=﹣上,過D作DE∥x軸交雙曲線于E,連接CE,則△CDE的面積為()A.3 B. C.4 D.7.已知反比例函數(shù),下列結(jié)論中不正確的是.()A.圖象必經(jīng)過點(3,-2) B.圖象位于第二、四象限C.若,則 D.在每一個象限內(nèi),隨值的增大而增大8.如圖,在⊙O,點A、B、C在⊙O上,若∠OAB=54°,則∠C()A.54° B.27° C.36° D.46°9.如圖,A、B、C三點在⊙O上,且∠AOB=80°,則∠ACB等于A.100° B.80° C.50° D.40°10.如圖,小明想利用太陽光測量樓高,發(fā)現(xiàn)對面墻上有這棟樓的影子,小明邊移動邊觀察,發(fā)現(xiàn)站在點處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重合且高度恰好相同.此時測得墻上影子高(點在同一條直線上).已知小明身高是,則樓高為()A. B. C. D.二、填空題(每小題3分,共24分)11.已知線段c是線段、的比例中項,且,,則線段c的長度為______.12.若正六邊形外接圓的半徑為4,則它的邊長為_____.13.反比例函數(shù)與在第一象限內(nèi)的圖象如圖所示,軸于點,與兩個函數(shù)的圖象分別相交于兩點,連接,則的面積為_________.14.計算:sin260°+cos260°﹣tan45°=________.15.二次函數(shù)的最大值是__________.16.如圖,圓是銳角的外接圓,是弧的中點,交于點,的平分線交于點,過點的切線交的延長線于點,連接,則有下列結(jié)論:①點是的重心;②;③;④,其中正確結(jié)論的序號是__________.17.下列投影或利用投影現(xiàn)象中,________是平行投影,________是中心投影.(填序號)18.已知和時,多項式的值相等,則m的值等于______.三、解答題(共66分)19.(10分)在平面直角坐標系xOy中,二次函數(shù)y=-x2+(m-1)x+4m的圖象與x軸負半軸交于點A,與y軸交于點B(0,4),已知點E(0,1).(1)求m的值及點A的坐標;(2)如圖,將△AEO沿x軸向右平移得到△A′E′O′,連結(jié)A′B、BE′.①當點E′落在該二次函數(shù)的圖象上時,求AA′的長;②設(shè)AA′=n,其中0<n<2,試用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時點E′的坐標;③當A′B+BE′取得最小值時,求點E′的坐標.20.(6分)如圖,某貨船以24海里/時的速度將一批重要物資從A處運往正東方向的M處,在點A處測得某島C在北偏東60°的方向上.該貨船航行30分鐘后到達B處,此時再測得該島在北偏東30°的方向上,(1)求B到C的距離;(2)如果在C島周圍9海里的區(qū)域內(nèi)有暗礁.若繼續(xù)向正東方向航行,該貨船有無觸礁危險?試說明理由(≈1.732).21.(6分)已知:如圖,,點在射線上.求作:正方形,使線段為正方形的一條邊,且點在內(nèi)部.22.(8分)計算:2cos230°+﹣sin60°.23.(8分)一個直四棱柱的三視圖如圖所示,俯視圖是一個菱形,求這個直四棱柱的表面積.24.(8分)(1)解方程:(2)如圖,是等腰直角三角形,是斜邊,將繞點逆時針旋轉(zhuǎn)后,能與重合,如果,那么的長等于多少?25.(10分)如圖,在10×10的網(wǎng)格中,有一格點△ABC(說明:頂點都在網(wǎng)格線交點處的三角形叫做格點三角形).(1)將△ABC先向右平移5個單位,再向上平移2個單位,得到△A'B'C',請直接畫出平移后的△A'B'C';(2)將△A'B'C'繞點C'順時針旋轉(zhuǎn)90°,得到△A''B''C',請直接畫出旋轉(zhuǎn)后的△A''B''C';(3)在(2)的旋轉(zhuǎn)過程中,求點A'所經(jīng)過的路線長(結(jié)果保留π).26.(10分)“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學(xué)生參加決賽,根據(jù)測試成績(成績都不低于50分)繪制出如圖所示的部分頻數(shù)分布直方圖.請根據(jù)圖中信息完成下列各題.(1)將頻數(shù)分布直方圖補充完整人數(shù);(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少;(3)現(xiàn)將從包括小明和小強在內(nèi)的4名成績優(yōu)異的同學(xué)中隨機選取兩名參加市級比賽,求小明與小強同時被選中的概率.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】圓的半徑為12,求出AB的長度,用弧長公式可求得的長度,圓錐的底面圓的半徑=圓錐的弧長÷2π.【詳解】AB=cm,∴∴圓錐的底面圓的半徑=÷(2π)=3cm.故選A.【點睛】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計算.解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應(yīng)關(guān)系:(1)圓錐的母線長等于側(cè)面展開圖的扇形半徑;(2)圓錐的底面周長等于側(cè)面展開圖的扇形弧長.正確對這兩個關(guān)系的記憶是解題的關(guān)鍵.2、B【分析】根據(jù)垂徑定理可知AE的長.在Rt△AOE中,運用勾股定理可求出圓的半徑,進而可求出直徑CD的長.【詳解】連接OA,由垂徑定理可知,點E是弦AB的中點,設(shè)半徑為r,由勾股定理得,即解得:r=13所以CD=2r=26,即圓的直徑為26,故選B.【點睛】本題主要考查了垂徑定理和勾股定理的性質(zhì)和求法,熟練掌握相關(guān)性質(zhì)是解題的關(guān)鍵.3、D【解析】根據(jù)圓周角定理求解即可.【詳解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故選D.【點睛】考查了圓周角定理的運用.圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.4、C【分析】利用基本作圖得出是角平分線的作圖,進而解答即可.【詳解】由作圖步驟可得:是的角平分線,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四邊形OCED=S△COE+S△DOE=,但不能得出,∴A、B、D選項正確,不符合題意,C選項錯誤,符合題意,故選C.【點睛】本題考查了作圖﹣基本作圖,全等三角形的判定與性質(zhì),等腰三角形的性質(zhì),三角形的面積等,熟練掌握5種基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線)是解題的關(guān)鍵.5、D【解析】∵△=>0,∴方程有兩個不相等的實數(shù)根.故選D.6、B【分析】作輔助線,構(gòu)建全等三角形:過A作GH⊥x軸,過B作BG⊥GH,過C作CM⊥ED于M,證明△AHD≌△DMC≌△BGA,設(shè)A(x,﹣),結(jié)合點B的坐標表示:BG=AH=DM=﹣1﹣x,由HQ=CM,列方程,可得x的值,進而根據(jù)三角形面積公式可得結(jié)論.【詳解】過A作GH⊥x軸,過B作BG⊥GH,過C作CM⊥ED于M,設(shè)A(x,﹣),∵四邊形ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∴∠BAG=∠ADH=∠DCM,∴△AHD≌△DMC≌△BGA(AAS),∴BG=AH=DM=﹣1﹣x,∴AG=CM=DH=1﹣,∵AH+AQ=CM,∴1﹣=﹣﹣1﹣x,解得:x=﹣2,∴A(﹣2,2),CM=AG=DH=1﹣=3,∵BG=AH=DM=﹣1﹣x=1,∴點E的縱坐標為3,把y=3代入y=﹣得:x=﹣,∴E(﹣,3),∴EH=2﹣=,∴DE=DH﹣HE=3﹣=,∴S△CDE=DE?CM=××3=.故選:B.【點睛】本題主要考查反比例函數(shù)圖象和性質(zhì)與幾何圖形的綜合,掌握“一線三垂直”模型是解題的關(guān)鍵.7、C【分析】A.將x=3代入反比例函數(shù),根據(jù)所求得的y值即可判斷;B.根據(jù)反比例函數(shù)的k值的正負即可判斷;C.結(jié)合反比例函數(shù)的圖象和性質(zhì)即可判斷;D.根據(jù)反比例函數(shù)的k值的正負即可判斷.【詳解】解:A.當x=3時,,故函數(shù)圖象必經(jīng)過點(3,-2),A選項正確;B.由反比例函數(shù)的系數(shù)k=-6<0,得到反比例函數(shù)圖象位于第二、四象限,本選項正確;C.由反比例函數(shù)圖象可知:當,則,故本選項不正確;D.由反比例函數(shù)的系數(shù)k=-6<0,得到反比例函數(shù)圖象在各自象限y隨x的增大而增大,故本選項正確.故選:C.【點睛】本題考查反比例函數(shù)的性質(zhì),反比例函數(shù)(k≠0),當k>0時,圖象位于第一、三象限,且在每一個象限,y隨x的增大而減?。划攌<0時,圖象位于第二、四象限,且在每一個象限,y隨x的增大而增大.在做本題的時候可根據(jù)k值畫出函數(shù)的大致圖,結(jié)合圖象進行分析.8、C【分析】先利用等腰三角形的性質(zhì)和三角形內(nèi)角和計算出∠AOB的度數(shù),然后利用圓周角解答即可.【詳解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=∠AOB=36°.故答案為C.【點睛】本題考查了三角形內(nèi)角和和圓周角定理,其中發(fā)現(xiàn)并正確利用圓周角定理是解題的關(guān)鍵.9、D【解析】試題分析:∵∠ACB和∠AOB是⊙O中同弧所對的圓周角和圓心角,且∠AOB=80°,∴∠ACB=∠AOB=40°.故選D.10、B【分析】過點C作CN⊥AB,可得四邊形CDME、ACDN是矩形,即可證明,從而得出AN,進而求得AB的長.【詳解】過點C作CN⊥AB,垂足為N,交EF于M點,
∴四邊形CDEM、BDCN是矩形,
∴,
∴,依題意知,EF∥AB,
∴,
∴,即:,
∴AN=20,
(米),
答:樓高為21.2米.
故選:B.【點睛】本題主要考查了相似三角形的應(yīng)用,把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求解即可,體現(xiàn)了轉(zhuǎn)化的思想.二、填空題(每小題3分,共24分)11、6【解析】根據(jù)比例中項的概念結(jié)合比例的基本性質(zhì),得:比例中項的平方等于兩條線段的乘積.所以c2=4×9,解得c=±6(線段是正數(shù),負值舍去),故答案為6.12、1【分析】根據(jù)正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形,即可求解.【詳解】正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,故正六邊形的外接圓半徑等于1,則正六邊形的邊長是1.故答案為:1.【點睛】本題考查了正多邊形和圓,利用正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形得出是解題的關(guān)鍵.13、【分析】設(shè)直線AB與x軸交于點C,那么.根據(jù)反比例函數(shù)的比例系數(shù)k的幾何意義,即可求出結(jié)果.【詳解】設(shè)直線AB與x軸交于點C.
∵AC⊥x軸,BC⊥x軸.
∵點A在雙曲線的圖象上,
∴,∵點B在雙曲線的圖象上,∴,∴.
故答案為:1.【點睛】本題主要考查反比例函數(shù)的比例系數(shù)的幾何意義.反比例函數(shù)圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關(guān)系,即.14、0【分析】將特殊角的三角函數(shù)值代入求解.【詳解】.故答案為.【點睛】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個特殊角的三角函數(shù)值.15、1【分析】二次函數(shù)的頂點式在x=h時有最值,a>0時有最小值,a<0時有最大值,題中函數(shù),故其在時有最大值.【詳解】解:∵,∴有最大值,當時,有最大值1.故答案為1.【點睛】本題考查了二次函數(shù)頂點式求最值,熟練掌握二次函數(shù)的表達式及最值的確定方法是解題的關(guān)鍵.16、②④【分析】根據(jù)三角形重心的定義,即可判斷①;連接OD,根據(jù)垂徑定理和切線的性質(zhì)定理,即可判斷②;由∠ACD=∠BAD,∠CAF=∠BAF,得∠AFD=∠FAD,若,可得∠EAF=∠ADF=∠BAC,進而得,即可判斷③;易證?ACD~?EAD,從而得,結(jié)合DF=DA,即可判斷④.【詳解】∵是弧的中點,∴∠ACD=∠BCD,即:CD是∠ACB的平分線,又∵AF是的平分線,∴點F不是的重心,∴①不符合題意,連接OD,∵是弧的中點,∴OD⊥AB,∵PD與圓相切,∴OD⊥PD,∴,∴②符合題意,∵是弧的中點,∴∠ACD=∠BAD,∵AF是的平分線,∴∠CAF=∠BAF,∴∠CAF+∠ACD=∠BAF+∠BAD,即:∠AFD=∠FAD,若,則∠AFD=∠AEF,∴∠AFD=∠AEF=∠FAD,∴∠EAF=∠ADF=∠BAC,∴.即:只有當時,才有.∴③不符合題意,∵∠ACD=∠BAD,∠D=∠D,∴?ACD~?EAD,∴,又∵∠AFD=∠FAD,∴DF=DA,∴,∴④符合題意.故答案是:②④.【點睛】本題主要考查圓的性質(zhì)與相似三角形的綜合,掌握垂徑定理,圓周角定理以及相似三角形的判定與性質(zhì)定理,是解題的關(guān)鍵.17、④⑥①②③⑤【分析】根據(jù)中心投影的性質(zhì),找到是燈光的光源即可判斷出中心投影;再利用平行光下的投影屬于平行投影可判斷出平行投影.【詳解】解:①②③⑤都是燈光下的投影,屬于中心投影;④因為太陽光屬于平行光線,所以日晷屬于平行投影;⑥中是平行光線下的投影,屬于平行投影,故答案為:④⑥;①②③⑤.【點睛】此題主要考查了中心投影和平行投影的性質(zhì),解題的關(guān)鍵是根據(jù)平行投影和中心投影的區(qū)別進行解答即可.18、或1【分析】根據(jù)和時,多項式的值相等,得出,解方程即可.【詳解】解:和時,多項式的值相等,,化簡整理,得,,解得或1.故答案為或1.【點睛】本題考查多項式以及代數(shù)式求值,正確理解題意是解題的關(guān)鍵.三、解答題(共66分)19、(2)m="2,A(-2,0);"(2)①,②點E′的坐標是(2,2),③點E′的坐標是(,2).【分析】試題分析:(2)將點代入解析式即可求出m的值,這樣寫出函數(shù)解析式,求出A點坐標;(2)①將E點的坐標代入二次函數(shù)解析式,即可求出AA′;②連接EE′,構(gòu)造直角三角形,利用勾股定理即可求出A′B2+BE′2當n=2時,其最小時,即可求出E′的坐標;③過點A作AB′⊥x軸,并使AB′="BE"=2.易證△AB′A′≌△EBE′,當點B,A′,B′在同一條直線上時,A′B+B′A′最小,即此時A′B+BE′取得最小值.易證△AB′A′∽△OBA′,由相似就可求出E′的坐標試題解析:解:(2)由題意可知4m=4,m=2.∴二次函數(shù)的解析式為.∴點A的坐標為(-2,0).(2)①∵點E(0,2),由題意可知,.解得.∴AA′=.②如圖,連接EE′.由題設(shè)知AA′=n(0<n<2),則A′O=2-n.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2–n)2+42=n2-4n+3.∵△A′E′O′是△AEO沿x軸向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=n.又BE=OB-OE=2.∴在Rt△BE′E中,BE′2=E′E2+BE2=n2+9,∴A′B2+BE′2=2n2-4n+29=2(n–2)2+4.當n=2時,A′B2+BE′2可以取得最小值,此時點E′的坐標是(2,2).③如圖,過點A作AB′⊥x軸,并使AB′=BE=2.易證△AB′A′≌△EBE′,∴B′A′=BE′,∴A′B+BE′=A′B+B′A′.當點B,A′,B′在同一條直線上時,A′B+B′A′最小,即此時A′B+BE′取得最小值.易證△AB′A′∽△OBA′,∴,∴AA′=∴EE′=AA′=,∴點E′的坐標是(,2).考點:2.二次函數(shù)綜合題;2.平移.【詳解】20、(1)12海里;(2)該貨船無觸礁危險,理由見解析【分析】(1)證出∠BAC=∠ACB,得出BC=AB=24×=12即可;(2)過點C作CD⊥AD于點D,分別在Rt△CBD、Rt△CAD中解直角三角形,可先求得BD的長,然后得出CD的長,從而再將CD與9比較,若大于9則無危險,否則有危險.【詳解】解:(1)由題意得:∠BAC=90°﹣10°=30°,∠MBC=90°﹣30°=10°,∵∠MBC=∠BAC+∠ACB,∴∠ACB=∠MBC﹣∠BAC=30°,∴∠BAC=∠ACB,∴BC=AB=24×=12(海里);(2)該貨船無觸礁危險,理由如下:過點C作CD⊥AD于點D,如圖所示:∵∠EAC=10°,∠FBC=30°,∴∠CAB=30°,∠CBD=10°.∴在Rt△CBD中,CD=BD,BC=2BD,由(1)知BC=AB,∴AB=2BD.在Rt△CAD中,AD=CD=3BD=AB+BD=12+BD,∴BD=1.∴CD=1.∵1>9,∴貨船繼續(xù)向正東方向行駛無觸礁危險.【點睛】本題考查解直角三角形的應(yīng)用-方向角問題、等腰三角形的判定與性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題.21、見詳解【分析】先以點B為圓心,以BD為半徑畫弧,作出點E,再分別以點D,點E為圓心,以BD為半徑畫弧,作出點F,連結(jié)即可作出正方形.【詳解】如圖,作法:1.以點B為圓心,以BD長為半徑畫弧,交AB于點E;2.分別以點D,點E為圓心,以BD長為半徑畫弧,兩弧相交于點F,3.連結(jié)EF,FD,∴四邊形DBEF即為所求作的正方形.理由:∵BD=DF=FE=EB∴四邊形DBEF為菱形,∵∴四邊形DBEF是正方形.【點睛】本題主要考查了基本作圖,正方形的判定.解題的關(guān)鍵是熟記作圖的方法及正方形的判定.22、【分析】先根據(jù)特殊三角函數(shù)值計算,然后再進行二次根式的加減.【詳解】原式=,=,=.【點睛】本題主要考查特殊三角函數(shù)值,解決本題的關(guān)鍵是要熟練掌握特殊三角函數(shù)值.23、【解析】試題分析:計算兩個底面的菱形的面積加上側(cè)面四個矩形的面積即可求得直四棱柱的表面積.試題解析:∵俯視圖是菱形,∴可求得底面菱
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年山東省畜牧獸醫(yī)局下屬事業(yè)單位真題
- 2024年三亞市公立醫(yī)院招聘專業(yè)技術(shù)人員真題
- 2024年遼寧省農(nóng)業(yè)農(nóng)村廳下屬事業(yè)單位真題
- 邊際效應(yīng)理論在經(jīng)濟中的應(yīng)用試題及答案
- 2024年天津市兒童醫(yī)院招聘筆試真題
- 2024年綏化市招聘公益性崗位筆試真題
- 2024年數(shù)盾奇安科技公司鄭州招聘筆試真題
- 2024年甘肅省畜牧獸醫(yī)局下屬事業(yè)單位真題
- 2024年昆明市紅云醫(yī)院招聘筆試真題
- 2024年吉安市吉安縣大數(shù)據(jù)中心招聘筆試真題
- 調(diào)壓器技術(shù)規(guī)范
- 學(xué)校生均占地面積
- 《康復(fù)醫(yī)學(xué)》第四章 常見疾病的康復(fù) 第二節(jié) 腫瘤康復(fù)課件
- 2016年度高考全國3卷文綜地理試題(解析版)
- SIPOC培訓(xùn)教材學(xué)習(xí)教案
- 2019年重慶江津小升初數(shù)學(xué)真題及答案
- 《菱形的判定》教學(xué)設(shè)計(共3頁)
- 配電箱系統(tǒng)圖
- 電纜井工程量計算
- 初中音樂--人聲的分類--(1)pptppt課件
- 育種學(xué) 第6章雜交育種
評論
0/150
提交評論