2022-2023學(xué)年廣東省佛山市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年廣東省佛山市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年廣東省佛山市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年廣東省佛山市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年廣東省佛山市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩30頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年廣東省佛山市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.A.0B.1/2C.1D.2

2.設(shè)a={-1,1,2),b={3,0,4},則向量a在向量b上的投影為()A.A.

B.1

C.

D.-1

3.

4.

A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

5.函數(shù)y=x3-3x的單調(diào)遞減區(qū)間為()A.A.(-∞,-1]

B.[-1,1]

C.[1,+∞)

D.(-∞,+∞)

6.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。

A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)

7.設(shè)z=x2y,則等于()。A.2yx2y-1

B.x2ylnx

C.2x2y-1lnx

D.2x2ylnx

8.lim(x2+1)=

x→0

A.3

B.2

C.1

D.0

9.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。

A.充要條件B.充分條件C.必要條件D.無(wú)關(guān)條件

10.

11.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

12.

13.

A.

B.1

C.2

D.+∞

14.A.A.-(1/2)B.1/2C.-1D.2

15.

16.設(shè)直線,ι:x/0=y/2=z/1=z/1,則直線ιA.A.過(guò)原點(diǎn)且平行于x軸B.不過(guò)原點(diǎn)但平行于x軸C.過(guò)原點(diǎn)且垂直于x軸D.不過(guò)原點(diǎn)但垂直于x軸17.()。A.2πB.πC.π/2D.π/418.()。A.3B.2C.1D.0

19.

A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)20.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

21.

22.

23.微分方程y''-2y'=x的特解應(yīng)設(shè)為

A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c

24.

25.曲線y=x-3在點(diǎn)(1,1)處的切線斜率為()

A.-1B.-2C.-3D.-4

26.

27.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ等于().

A.-3/4B.0C.3/4D.128.()。A.充分必要條件B.充分非必要條件C.必要非充分條件D.既非充分也非必要條件

29.A.0B.1C.∞D(zhuǎn).不存在但不是∞

30.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按

規(guī)律擺動(dòng),(式中∮以rad計(jì),t以s計(jì))。則當(dāng)t=0和t=2s時(shí),關(guān)于篩面中點(diǎn)M的速度和加速度就散不正確的一項(xiàng)為()。

A.當(dāng)t=0時(shí),篩面中點(diǎn)M的速度大小為15.7cm/s

B.當(dāng)t=0時(shí),篩面中點(diǎn)M的法向加速度大小為6.17cm/s2

C.當(dāng)t=2s時(shí),篩面中點(diǎn)M的速度大小為0

D.當(dāng)t=2s時(shí),篩面中點(diǎn)M的切向加速度大小為12.3cm/s2

31.

32.∫cos3xdx=A.A.3sin3x+CB.-3sin3x+CC.(1/3)sin3x+CD.-(1/3)sin3x+C

33.

A.1B.0C.-1D.-2

34.

35.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內(nèi)()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號(hào)不定

36.在空間直角坐標(biāo)系中方程y2=x表示的是

A.拋物線B.柱面C.橢球面D.平面

37.A.1

B.0

C.2

D.

38.

39.

40.()。A.e-6

B.e-2

C.e3

D.e6

41.一端固定,一端為彈性支撐的壓桿,如圖所示,其長(zhǎng)度系數(shù)的范圍為()。

A.μ<0.7B.μ>2C.0.7<μ<2D.不能確定

42.

43.

44.在空間直角坐標(biāo)系中,方程2+3y2+3x2=1表示的曲面是().

A.球面

B.柱面

C.錐面

D.橢球面

45.

46.

47.()A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無(wú)關(guān)條件

48.

49.設(shè)f'(x0)=1,則等于().A.A.3B.2C.1D.1/2

50.

二、填空題(20題)51.設(shè)y=cosx,則dy=_________。

52.53.微分方程y=x的通解為_(kāi)_______。

54.

55.56.57.級(jí)數(shù)的收斂區(qū)間為_(kāi)_____.

58.冪級(jí)數(shù)的收斂半徑為_(kāi)_____.

59.

60.

61.y=lnx,則dy=__________。

62.

63.

64.65.

66.

67.

68.

69.設(shè)y=ln(x+2),貝y"=________。

70.

三、計(jì)算題(20題)71.證明:72.

73.74.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.75.

76.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

77.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

78.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.79.求微分方程的通解.80.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

81.

82.83.求曲線在點(diǎn)(1,3)處的切線方程.84.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).85.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

86.87.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).88.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

89.

90.求微分方程y"-4y'+4y=e-2x的通解.

四、解答題(10題)91.92.

93.

94.95.

96.

97.

98.求由曲線y=2-x2,y=2x-1及x≥0圍成的平面圖形的面積S,以及此平面圖形繞x軸旋轉(zhuǎn)所成旋轉(zhuǎn)體的體積.99.求函數(shù)y=xex的極小值點(diǎn)與極小值。100.五、高等數(shù)學(xué)(0題)101.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內(nèi)()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號(hào)不定六、解答題(0題)102.

參考答案

1.D本題考查了二元函數(shù)的偏導(dǎo)數(shù)的知識(shí)點(diǎn)。

2.B

3.C解析:

4.C

本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).

5.B

6.A

7.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。對(duì)于z=x2y,求的時(shí)候,要將z認(rèn)定為x的冪函數(shù),從而可知應(yīng)選A。

8.C

9.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件

10.C

11.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

12.A

13.C

14.A

15.C

16.C將原點(diǎn)(0,0,0)代入直線方程成等式,可知直線過(guò)原點(diǎn)(或由直線方程x/m=y/n=z/p表示過(guò)原點(diǎn)的直線得出上述結(jié)論)。直線的方向向量為(0,2,1),又與x軸同方向的單位向量為(1,0,0),且

(0,2,1)*(1,0,0)=0,

可知所給直線與x軸垂直,因此選C。

17.B

18.A

19.A

本題考查的知識(shí)點(diǎn)為級(jí)數(shù)絕對(duì)收斂與條件收斂的概念.

20.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

21.B

22.C解析:

23.C本題考查了二階常系數(shù)微分方程的特解的知識(shí)點(diǎn)。

因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.

24.C

25.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(diǎn)(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(diǎn)(1,1)處的切線斜率為-3,故選C。

26.B

27.D解析:本題考查的知識(shí)點(diǎn)為拉格朗日中值定理的條件與結(jié)論.

由于y=x2-x+1在[-1,3]上連續(xù),在(-1,3)內(nèi)可導(dǎo),可知y在[-1,3]上滿足拉格朗日中值定理,又由于y'=2x-1,因此必定存在ξ∈(-1,3),使

可知應(yīng)選D.

28.C

29.D

30.D

31.A

32.C

33.A

本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)公式.

可知應(yīng)選A.

34.C

35.D∵f"(x)<0,(a<x≤b).∴(x)單調(diào)減少(a<x≤b)當(dāng)f(b)<0時(shí),f(x)可能大于0也可能小于0。

36.B解析:空間中曲線方程應(yīng)為方程組,故A不正確;三元一次方程表示空間平面,故D不正確;空間中,缺少一維坐標(biāo)的方程均表示柱面,可知應(yīng)選B。

37.C

38.A解析:

39.C

40.A

41.D

42.C

43.B

44.D對(duì)照標(biāo)準(zhǔn)二次曲面的方程可知x2+3y2+3x2=1表示橢球面,故選D.

45.B

46.C

47.D內(nèi)的概念,與f(x)在點(diǎn)x0處是否有定義無(wú)關(guān).

48.A

49.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由題設(shè)知f'(x0)=1,又由題設(shè)條件知

可知應(yīng)選B.

50.C解析:

51.-sinxdx

52.-2/π本題考查了對(duì)由參數(shù)方程確定的函數(shù)求導(dǎo)的知識(shí)點(diǎn).53.本題考查可分離變量的微分方程.分離變量得dy=xdx,兩端分別積分,∫dy=∫xdx,

54.2/555.本題考查的知識(shí)點(diǎn)為重要極限公式。

56.57.(-∞,+∞)本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.

58.

解析:本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

注意此處冪級(jí)數(shù)為缺項(xiàng)情形.

59.

解析:

60.

61.(1/x)dx

62.

63.y=f(0)

64.答案:165.0

66.(01]

67.

68.11解析:

69.

70.(03)(0,3)解析:

71.

72.由一階線性微分方程通解公式有

73.74.函數(shù)的定義域?yàn)?/p>

注意

75.

76.

77.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%78.由二重積分物理意義知

79.80.由等價(jià)無(wú)窮小量的定義可知

81.

82.

83.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

84.

列表:

說(shuō)明

85.

86.

87.

88.

89.

90.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

91.

92.93.解D在極坐標(biāo)系下可以表示為

94.

95.

96.97.本題考查的知識(shí)點(diǎn)為二重積分的物理應(yīng)用.

解法1利用對(duì)稱性.

解法2

若已知平面薄片D,其密度為f(x,Y),則

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論