電氣課件電路理論-chapter15the laplace trans_第1頁
電氣課件電路理論-chapter15the laplace trans_第2頁
電氣課件電路理論-chapter15the laplace trans_第3頁
電氣課件電路理論-chapter15the laplace trans_第4頁
電氣課件電路理論-chapter15the laplace trans_第5頁
已閱讀5頁,還剩60頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

CHAPTER15THELAPLACETRANSFORMThelaplacetransformissignificant:1.Itcanbeappliedtoawidervarietyofinputs.2.Itprovidesaneasywaytosolvecircuitproblemsinvolvinginitialconditions.3.Itcanprovideusthecompleteresponsecomprisingboththenaturalandforcedresponses.CHAPTER15THELAPLACETRANSFORM15.1DefinitionoftheLaplaceTransform15.2PropertyoftheLaplaceTransform15.3TheInverseLaplaceTransform15.4ApplicationtoCircuits15.1DefinitionoftheLaplaceTransformGivenafunctionf(t),itsLaplacetransformation,denotedbyF(s),isgivenbyWheresisacomplexvariablegivenbys=σ+jω1.One_sidedLaplaceTransform2.Convergencecriterion:3.ALaplacetransformpair:f(t)F(S)4.TheLaplaceTransformofsometypicalfunctions:(2)Theunitstepfunction(單位階躍函數):(1)Theexponentialfunction(指數函數):(3)Theimpulsefunction(沖激函數):=115.2PropertiesofTheLaplaceTransform:1.Linearity:2.Circuitelementsinsdomain:R:u=Ri1.Kirchhoff’slawsinsdomain:+u-iR+U(S)-I(S)R2.scaling:Example:3.Differentiation(1).TimeDifferentiationL:i+u-L+

-sLU(s)I(s)sL+-U(s)I(s)ML1L2i1i2+u1-+u2-L1i1(0-)Mi2(0-)Mi1(0-)L2i2(0-)+U2(S)-+U1(S)-I1(S)I2(S)SL1SL2+

-+-SMM:(2).FrequencyDifferentiation:4.Integration:(1)TimeIntegration:+u-iC:IC(S)1/sCuc(0-)/SUc(s)

1/sCCuc(0-)Ic(s)Uc(s)(1).Frequencyshift4.Shift4.Shift(2).Timeshift(延遲定理)f(t)(t)ttf(t-t0)(t-t0)t0f(t)(t-t0)tt0例1:1Ttf(t)TTf(t)?Tt例2:5.Timeperiodicity...tf(t)1T/2TIff

(t)(f1(t)(0,T))isaperiodicfunction6.InitialandFinalValues:Initial_valuetherom:f(t)在t=0處無沖激則Final_valuetheorem:例2:1(t)RC+u-校驗:15.3.TheInverseLaplaceTransformGivenF(s),howtoobtainthecorrespondingf(t):(1)Theinverselaplacetransform(2)MatchingentriesinTable15.2:(3)PartialfractionexpansiontobreakF(s)downintosimpletermswhoseinversetransformcanbegotfromTable15.2UsepartialfractionexpansiontoposeF(s):1.Simplepoles:(洛比達法則)(分解定理)上例:一對共軛復根為k1,k2也是一對共軛復根2.Complexpoles:method2:completingthesquare(配方)3.Repeatedpoleas:頻域延遲2.)求F(S)分母多項式等于零的根,將F(S)分解成部分分式之和3.)求各部分分式的系數4.)對每個部分分式和多項式逐項求拉氏反變換。小結:1.)

將F(S)化成最簡真分式由F(S)求f(t)的步驟例2:1(t)RC+u-校驗:15.4ApplicationtoCircuitsStepsinapplyingthelaplacetransform:Transformthecircuitfromthetimedomaintothesdomain.Solvethecircuitusingnodalanalysis,meshanalysis,sourcetransformation,superposition,oranycircuitanalysistechniquewithwhichwearefamiliar.Taketheinversetransformofthesolutionandthusobtainthesolutioninthetimedomain.2.Circuitelementsinsdomain:R:u=Ri1.Kirchhoff’slawsinsdomain:+u-iR+U(S)-I(S)RL:i+u-L+

-sLU(s)I(s)sL+-U(s)I(s)+u-iC:IC(S)1/sCuc(0-)/SUc(s)

1/sCCuc(0-)Ic(s)Uc(s)ML1L2i1i2+u1-+u2-L1i1(0-)Mi2(0-)Mi1(0-)L2i2(0-)+U2(S)-+U1(S)-I1(S)I2(S)SL1SL2+

-+-SMM:+u1-+u2-Ri1u1受控源:(s)U+1(s)-m

RI1(S)+U2-U1(S)+u-iRLC+U(S)-I(S)RSL1/SCImpedanceinthesdomainOhm’slawinsdomain3.Acircuitmodelinsdomain:運算電路RRLSL1/SCI1(S)E/SI2(S)RRLLCi1i2Ee(t)時域電路1.Transformthesourcesintosdomain.2.Transformthecircuitelementsintosdomain.3.Considertheinitialconditionofthestorageelements.Thecircuitintimedomain例5Ω1F20Ω10Ω10Ω0.5H50V+-uc+

-iLt=0,opentheswitchuc(0-)=25ViL(0-)=5At>0,circuitmodelinsdomain200.5s-++-1/s25/s2.5V5IL(S)UC(S)4.Laplacetransformapplicationincircuits4.steps:1.Determineuc(0-),iL(0-)。2.Setupacircuitmodelinsdomain.3.Solvethecircuit.4.Taketheinversetransformofthesolution.Example1:200V30Ω0.1H10Ω-uc+1000μFiLWhent=0,kcloses,CalculateiL,uL.200V30Ω0.1H10Ω-uc+1000μFiL(2)Setupthecircuitmodelinsdomain200/SV300.1s0.5V101000/S100/SVIL(S)I2(S)200/SV300.1s0.5V101000/S100/SVIL(S)I2(S)(4)Inversetransformation:求UL(S)UL(S)?200/SV300.1s0.5V101000/S100/SVIL(S)I2(S)RC+ucis例2:求沖激響應R1/SC+Uc(S)Is(s)tuc(V)0tic例.

+-UskR1L1L2R2i1i20.3H0.1H10V2Ω3Ωt=0時打開開關k,求電流i1,i2。10/SV20.3S1.5V30.1SI1(S)ti1523.750UL1(S)10/SV20.3S1.5V30.1SI1(S)uL1-6.56t-0.375(t)0.375(t)uL2t-2.19ti1523.750磁鏈守恒:i2(0–)=i

(0–)=2AThecircuitisshownintheFig.,whent=0,theswitchisopen,calculatei.**–+1H20V2H1H2H10102i1i2i–+20V10102i1i2ii1(0–)=0i2(0–)=i

(0–)=2A**–+1H20V2H1H2H10102i1i2ii1(0–)=0**–+S2SS1010i++––2220S20SI(S)=+45S+20I(S)=5S(S+4)4S+20I(S)=S1S+40.2–i(t)=1–0.2e–4t小結:1、運算法直接求得全響應3、運算法分析動態(tài)電路的步驟2、用0-初始條件,跳變情況自動包含在響應中1).由.換路前電路計算uc(0-),iL(0-)。2).畫運算電路圖3).應用電路分析方法求象函數。4).反變換求原函數。15.5TRANSFERFUNCTIONSThetransferfunctionH(s)istheratiooftheoutputresponseY(s)totheinputexcitationX(s),assumingallinitialconditionsarezero.H(S)H(j)H

(j)=UR.U.+-U.RjC1jL+-UR.+-RSC1SL+-U(S)UR(S)H

(S)=UR(S)U(S)RR+SL+

SC1=jCRR+jL+

1=與對應正弦穩(wěn)態(tài)響應的關系H(S)H(j)1.Sinusoidalresponse:

iL(0-)=0iK(t=0)L+–uLRuS+-i(0-)=0utuScalculate:i

(t)

ADISCUSSION:PHASORDOMAINANDSDOMAIN強制分量(穩(wěn)態(tài)分量)自由分量(暫態(tài)分量)

iL(0-)=0iK(t=0)L+–uLRuS+-Poticularsolution:定積分常數A由

iL(0-)=0I(s)K(t=0)SL+–uL(s)RuS(S)+-Phasormethod:It’saconvenientwaytogetthesinusoidalsteady_stateresponse.Laplacetransform:apowerfultooltoanalysedynamicsofthehigher_ordercircuits.Itcanprovideusthecomplete

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論