數(shù)字信號(hào)處理與控制課件:Chapter6 Z-Transform_第1頁
數(shù)字信號(hào)處理與控制課件:Chapter6 Z-Transform_第2頁
數(shù)字信號(hào)處理與控制課件:Chapter6 Z-Transform_第3頁
數(shù)字信號(hào)處理與控制課件:Chapter6 Z-Transform_第4頁
數(shù)字信號(hào)處理與控制課件:Chapter6 Z-Transform_第5頁
已閱讀5頁,還剩60頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1Chapter6Z-TransformDefinitionROC(RegionofConverges)z-TransformPropertiesTransferFunction

2Z-TransformIncontinuoussignalsystem,weuseS-TransformandFTasthetoolstoprocessproblemsinthetransformdomain;soindiscretesignalsystem,weuseZ-TransformandDFT.Z-Transformcanmakethesolutionfordiscretetimesystemsverysimple.3Z-TransformTheDTFTprovidesafrequency-domainrepresentationofdiscrete-timesignalsandLTIdiscrete-timesystemsBecauseoftheconvergencecondition,inmanycases,theDTFTofasequencemaynotexist.46.1DefinitionandPropertiesDTFTdefinedby:leadstothez-transform。

z-transformmayexistformanysequencesforwhichtheDTFTdoesnotexist。5DefinitionandPropertiesForagivensequenceg[n],itsz-transformG(z)isdefinedas:wherez=Re(z)+jIm(z)isacomplexvariable.6DefinitionandPropertiesIfweletz=rej,thenthez-transformreducesto:Forr=1(i.e.,|z|=1),z-transformreducestoitsDTFT,providedthelatterexists。Thecontour|z|=1isacircleinthez-planeofunityradiusandiscalledtheunitcircle。7DefinitionandPropertiesLiketheDTFT,thereareconditionsontheconvergenceoftheinfiniteseries:

Foragivensequence,thesetRofvaluesofzforwhichitsz-transformconvergesiscalledtheregionofconvergence(ROC)8DefinitionandPropertiesFromourearlierdiscussionontheuniformconvergenceoftheDTFT,itfollowsthattheseries:convergesif{g[n]r-n}isabsolutelysummable,i.e.,if:9DefinitionandPropertiesIngeneral,theROCofaz-transformofasequenceg[n]isanannularregionofthez-plane:where

Note:Thez-transformisaformofaLaurentseriesandisananalyticfunctionateverypointintheROC。10DefinitionandPropertiesExample-Determinethez-transformX(z)ofthecausalsequencex[n]=n[n]

anditsROC.NowTheabovepowerseriesconvergesto:ROCistheannularregion|z|>|α|.11DefinitionandPropertiesExample-Thez-transformm(z)oftheunitstepsequencem[n]canbeobtainedfrom:

mROCistheannularregion.bysettinga=1,12DefinitionandPropertiesNote:TheFouriertransformofasequenceconvergesuniformlyifandonlyiftheROCofthez-transfromofthesequenceincludestheunitcircle.Note:Onlywayanuniquesequencecanbeassociatedwithaz-transformisbyspecifyingitsROC.13CommonlyUsed

z-transform146.2Rational

z-TransformInthecaseofLTIdiscrete-timesystemsweareconcernedwithinthiscourse,allpertinentz-transformsarerationalfunctionsofz-1.Thatis,theyareratiosoftwopolynomialsinz-1:15Rational

z-TransformArationalz-transformcanbealternatelywritteninfactoredformas:16Rational

z-TransformAtarootz=lofthenumeratorpolynomialG(l)=0andasaresult,thesevaluesofzareknownasthezerosofG(z).Atarootz=lofthedenominatorpolynomialG(l),andasaresult,thesevaluesofzareknownasthepolesofG(z).17Rational

z-TransformConsider:NoteG(z)hasMfinitezerosandNfinitepoles:IfN>MthereareadditionalN-Mzerosatz=0(theorigininthez-plane)IfN<MthereareadditionalM-Npolesatz=0.18Rational

z-TransformExample-Thez-transformmhasazeroatz=0andapoleatz=1.19Rational

z-TransformAphysicalinterpretationoftheconceptsofpolesandzeroscanbegivenbyplottingthelog-magnitude20log10|G(z)|asshownonnextfigurefor:20Rational

z-Transformpolesz=0.4±j0.6928,zerosz=1.2±jROCofaRational

z-transformROCofaz-transformisanimportantconcept.WithoutthediscussionoftheROC,thereisnouniquerelationshipbetweenasequenceanditsz-transform.Hence,thez-transformmustalwaysbespecifiedwithitsROC.22ROCofaRational

z-transformMoreover,iftheROCofaz-transformincludestheunitcircle,theDTFTofthesequenceisobtainedbysimplyevaluatingthez-transformontheunitcircle.RelationshipbetweenROCofz-transformoftheimpulsesequenceofacausalLTIDTsystemanditsBIBOstability.23ROCofaRational

z-transformTheROCofarationalz-transformisboundedbythelocationsofitspoles.TounderstandtherelationshipbetweenthepolesandtheROC,itisinstructivetoexaminethepole-zeroplotofaz-transform.24ROCofaRational

z-transformConsideragainthepole-zeroplotofthez-transformm(z).25Asequencecanbeoneofthefollowingtypes:finite-length,right-sided,left-sidedandtwo-sided.Ingeneral,theROCdependsonthetypeofthesequenceofinterest.ROCofaRational

z-transform26ROCofDifferentSequencesExample-Aright-sidedsequencewithnonzerosamplevaluesforn0issometimescalledacausalsequence.Consideracausalsequenceu1[n].Itsz-transformisgivenby:27ROCofDifferentSequencesExample-Aleft-sidedsequencewithnonzerosamplevaluesforn0issometimescalledaanticausalsequence.Considerananticausalsequencev1[n].Itsz-transformisgivenby:28ROCofaRational

z-transformThezerosandpolesofarationalz-transformcanbeeasilydeterminedusingMATLAB[z,p,k]=tf2zp(num,den) determinesthezeros,poles,andthegainconstantofarationalz-transformwiththenumeratoranddenominatorcoefficientsspecifiedbythevectornumandden,respectively.29ROCofaRational

z-transformThepole-zeroplotisdeterminedusingthefunctionzplane.Thez-transformcanbeeitherdescribedintermsofitszerosandpoles:zplane(zeros,poles).or,itcanbedescribedintermsofitsnumeratoranddenominatorcoefficients:zplane(num,den).PleaselookatP259exampleaboutz-transformusingMATLAB.306.4TheInversez-TransformGeneralExpressionInversez-TransformbyTableLook-upMethodInversez-TransformbyPartial-FractionExpansionInversez-TransformviaLongDivisionMATALBComputation316.4.2TableLook-upMethodIllustratethismethodinExample6.12:Fromtable6.1,weget:So:326.4.3Partial-FractionExpansionInpracticalapplication,theX(z)istherationalfractionofz.WhereA(z),B(z)arepolynomialsofz.So:Note:youmustmakeeachXk(z)easytosolveitsIZT,andpayattentiontoit’sROC.33Partial-FractionExpansionIf:ThenX(z)isexpandedaspartial-fraction:whereziisar-orderpolesofX(z),eachzk

isasinglepoleofX(z)(k=1,2,…,N-r).34Partial-FractionExpansionExample-ConsiderBylongdivisionwearriveat:35Partial-FractionExpansionExample-Letthez-transformH(z)ofacausalsequenceh[n]begivenby:

Apartial-fractionexpansionofH(z)isthenoftheform:36Partial-FractionExpansionNow:and:37Partial-FractionExpansionHenceTheinversetransformoftheaboveisthereforegivenby:386.4.5

Inversez-TransformviaLongDivisionBecauseincommoncondition,X(z)isarationalfraction,wecandividenumeratorpolynomialbydenominatorpolynomialtogettheexpansionofthepowerseries.Note:Whenweuselongdivisionmethods,wemustfirstestimatetheROCofx(n),thenexpandX(z)intoappropriatex(n).

39Inversez-TransformviaLongDivisionExample

–ConsideracausalH(z):Longdivisionofthenumeratorbythedenominatoryields:Asaresult:40Inversez-Transform

UsingMATLABThefunctionimpzcanbeusedtofindtheinverseofarationalz-transformG(z).ThefunctioncomputesthecoefficientsofthepowerseriesexpansionofG(z).Thenumberofcoefficientscaneitherbeuserspecifiedordeterminedautomatically.416.5z-TransformProperties42z-TransformProperties1.InitialvaluetheoremForacausalsequencex(n),exist:2.TerminalvaluetheoremForacausalsequencex(n),andthepoleofX(z)=Z[x(n)]insidetheunitcycle(inunitcyclethereareatbestsinglepoles),then:43z-TransformPropertiesExample-Considerthetwo-sidedsequence:Letx[n]=n[n]andy[n]=-n

[-n-1]withX(z)andY(z)denoting,respectively,theirz-transforms:Now:44z-TransformPropertiesUsingthelinearitypropertywearriveat:TheROCofV(z)isgivenbytheoverlapregionsof|z|>||and|z|<||:If||<||,thenthereisanoverlapandtheROCisanannularregion||<|z|<||.If||>||,thenthereisnooverlapandV(z)doesnotexist.

45z-TransformPropertiesExample-Determinethez-transformanditsROCofthecausalsequenceWecanexpressx[n]=v[n]+v*[n]whereThez-transformofv[n]isgivenby:46z-TransformPropertiesUsingtheconjugationpropertyweobtainthez-transformofv*[n]as:Finally,usingthelinearitypropertyweget:47z-TransformPropertiesOr:Example-Determinethez-transformY(z)andtheROCofthesequence:

Wecanwritey[n]=nx[n]+x[n]wherex[n]=n[n]

48z-TransformPropertiesNow,thez-transformX(z)ofx[n]=n[n]isgivenby:Usingthedifferentiationproperty,wearriveatthez-transformofnx[n]as:49z-TransformPropertiesUsingthelinearitypropertywefinallyobtain:506.6ComputationoftheConvolutionSumofFinite-LengthSequencesTabularmethodsforthecomputationofthelinearandcircularconvolutionhavebeenoutlined.Now,wedescribealternatemethodsforthecomputationofthelinearandcircularconvolutionthatbasedonthemultiplicationoftwopolynomial.516.6.1LinearConvolutionLetx[n]andh[n]betwosequencesoflengthsL+1andM+1,respectively.Theirz-transforms,X(z)andH(z)be:So,thez-transformoflinearconvolutionsequencey[n]isY(z):Anditscoefficientisy[n].526.6.2CircularConvolutionLetx[n]andh[n]bothbetwosequencesofdegreeN-1,Theirz-transforms,X(z)andH(z)be:So,thez-transformoflinearconvolutionsequencey[n]isY(z):53CircularConvolutionLetYc(z)denotethepolynomialofdegreeN-1whosecoefficientsisyc[n],itcanbeshownthat(Problem6.17):Themodulooperationwithrespecttoz-N=1inaboveequationofYL(z).PleaselookatP279abouttheprocessexample.546.7TheTransferFunctionThez-transformoftheimpulseresponseofanLTIsystem,calledthetransferfunction,isapolynomialinz-1.Inmostpracticalcases,theLTIdigitalfilterofinterestischaracterizedbyalineardifferentequationwithconstantandrealcoefficient,soit’stransferfunctionisrationalz-transform.556.7.1DefinitionOrigin:Intimedomain,useunitsampleresponseh[n]torepresentaLTIsystem:TodoZTforbothsides,weget:Then:It’sthetransferfunctionofaLTIsystem.566.7.2TransferFunctionExpressionFIRDigitalFilterInthecaseofanLTIFIRdigitalfilter,withit’simpulseresponseh[n]definedforN1≤n≤N2,andthus,h[n]=0forn<N1andn>N2.Therefore,thetransferfunctionisgivenby:57TransferFunctionExpressionFinite-DimensionLinearTime-InvariantIIRDiscrete-TimeSystemConsideranLTIdiscrete-timesystemcharacterizedbyadifferenceequation

Itstransferfunctionisobtainedbytakingthez-transformofbothsidesoftheaboveequation,Thus:58TransferFunctionExpression1.arethefinitezeros,andarethefinitepolesofH(z).2.IfN>M,thereareadditional(N-M)zerosatz=0;ifN<M,thereareadditional(M-N)polesatz=0.59TransferFunctionExpression3.ForacausalIIRfilter,the

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論