版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年廣東省湛江市統(tǒng)招專升本高等數(shù)學(xué)二自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(100題)1.A.A.
B.
C.
D.
2.A.低階無(wú)窮小量B.等價(jià)無(wú)窮小量C.同階但不等價(jià)無(wú)窮小量D.高階無(wú)窮小量
3.()。A.
B.
C.
D.
4.
5.
6.A.A.極小值1/2B.極小值-1/2C.極大值1/2D.極大值-1/2
7.A.極大值1/2B.極大值-1/2C.極小值1/2D.極小值-1/2
8.
9.
10.()。A.
B.
C.
D.
11.
A.x=-2B.x=-1C.x=1D.x=0
12.
13.
14.某建筑物按設(shè)計(jì)要求使用壽命超過(guò)50年的概率為0.8,超過(guò)60年的概率為0.6,該建筑物經(jīng)歷了50年后,它將在10年內(nèi)倒塌的概率等于【】A.0.25B.0.30C.0.35D.0.40
15.
()。A.-50,-20
B.50,20
C.-20,-50
D.20,50
16.曲線y=x3-3x上切線平行于x軸的點(diǎn)是【】
A.(0,0)B.(1,2)C.(-1,2)D.(-1,-2)
17.()。A.是駐點(diǎn),但不是極值點(diǎn)B.是駐點(diǎn)且是極值點(diǎn)C.不是駐點(diǎn),但是極大值點(diǎn)D.不是駐點(diǎn),但是極小值點(diǎn)
18.從9個(gè)學(xué)生中選出3個(gè)做值日,不同選法的種數(shù)是().A.3B.9C.84D.504
19.【】A.2xcosx4
B.x2cosx4
C.2xsinx4
D.x2sinx4
20.
21.
22.
23.【】
A.0B.1C.0.5D.1.524.若隨機(jī)事件A與B互不相容,且P(A)=0.4,P(B)=0.3,則P(A+B)=()。A.0.82B.0.7C.0.58D.0.5225.()。A.3B.2C.1D.2/326.若fˊ(x)<0(a<x≤b),且f(b)>0,則在(α,b)內(nèi)必有().A.A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)可正可負(fù)27.函數(shù)f(x)在點(diǎn)x0處有定義,是f(x)在點(diǎn)x0處連續(xù)的()。A.必要條件,但非充分條件B.充分條件,但非必要條件C.充分必要條件D.非充分條件,亦非必要條件28.5人排成一列,甲、乙必須排在首尾的概率P=()。A.2/5B.3/5C.1/10D.3/10
29.
30.
31.A.2hB.α·2α-1C.2αln2D.032.A.A.
B.
C.
D.
33.()。A.
B.
C.
D.
34.
35.
36.Y=xx,則dy=()A.B.C.D.
37.
38.若在(a,b)內(nèi)f'(x)>0,f(b)>0,則在(a,b)內(nèi)必有()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號(hào)不定39.()。A.
B.
C.
D.
40.
41.
42.
43.
44.()。A.
B.-1
C.2
D.-4
45.設(shè)y=f(x)二階可導(dǎo),且f'(1)=0,f"(1)>0,則必有A.A.f(1)=0B.f(1)是極小值C.f(1)是極大值D.點(diǎn)(1,f(1))是拐點(diǎn)
46.
A.cos2B.-cos2C.sin2D.-sin247.A.A.-1B.-2C.1D.2
48.
49.A.A.1B.0C.-1D.不存在
50.
51.
52.()。A.
B.
C.
D.
53.
54.
55.A.A.x+y
B.
C.
D.
56.
57.A.A.
B.
C.0
D.1
58.下列定積分的值等于0的是()。A.
B.
C.
D.
59.函數(shù)y=lnx在(0,1)內(nèi)()。A.嚴(yán)格單調(diào)增加且有界B.嚴(yán)格單調(diào)增加且無(wú)界C.嚴(yán)格單調(diào)減少且有界D.嚴(yán)格單調(diào)減少且無(wú)界
60.
61.
62.A.A.0B.2C.3D.5
63.下列反常積分發(fā)散的是【】
A.
B.
C.
D.
64.當(dāng)x→1時(shí),下列變量中不是無(wú)窮小量的是()。A.x2-1
B.sin(x2-1)
C.lnx
D.ex-1
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.若,則f(x)等于【】
A.
B.
C.
D.
75.過(guò)曲線y=x+lnx上M0點(diǎn)的切線平行直線y=2x+3,則切點(diǎn)M0的坐標(biāo)是A.A.(1,1)B.(e,e)C.(1,e+1)D.(e,e+2)
76.
77.設(shè)100件產(chǎn)品中有次品4件,從中任取5件的不可能事件是()。A.“5件都是正品”B.“5件都是次品”C.“至少有1件是次品”D.“至少有1件是正品”78.A.A.0B.e-1
C.1D.e79.A.A.1/2B.1/3C.1/4D.1/580.A.A.
B.
C.
D.
81.f(x)=|x-2|在點(diǎn)x=2的導(dǎo)數(shù)為A.A.1B.0C.-1D.不存在
82.
83.設(shè)函數(shù)f(x)=xlnx,則∫f'(x)dx=__________。A.A.xlnx+CB.xlnxC.1+lnx+CD.(1/2)ln2x+C84.()。A.-3B.0C.1D.3
85.
86.A.A.9B.8C.7D.6
87.
88.()。A.-1B.0C.1D.289.A.單調(diào)遞增且曲線為凹的B.單調(diào)遞減且曲線為凸的C.單調(diào)遞增且曲線為凸的D.單調(diào)遞減且曲線為凹的
90.
91.
92.
93.
94.()。A.
B.
C.
D.
95.
96.下列反常積分收斂的是【】
A.
B.
C.
D.
97.
98.A.A.-1B.-2C.1D.2
99.
100.
A.xyB.xylnyC.xylnxD.yxy-l二、填空題(20題)101.
102.
103.
104.曲線y=x3-3x2+5x-4的拐點(diǎn)坐標(biāo)為_(kāi)_____.
105.
106.
107.
108.
109.
110.
111.
112.
113.函數(shù)y=3x2+6x+5的單調(diào)減少區(qū)間是__________。
114.
115.設(shè)z=exey,則
116.
117.
118.設(shè)f'(sinx)=cos2x,則f(x)=__________。
119.五人排成一行,甲、乙二人必須排在一起的概率P=__________.120.y=(x)由方程xy=ey-x確定,則dy=__________.三、計(jì)算題(10題)121.
122.求二元函數(shù)f(x,y)=x2+y2+xy在條件x+2y=4下的極值.
123.
124.
125.
126.
127.
128.
129.
130.
四、解答題(10題)131.設(shè)y=ln(sinx+cosx),求dy。
132.133.
134.
135.
136.已知f(x)的一個(gè)原函數(shù)是arctanx,求∫xf'(x)dx。
137.
138.設(shè)函數(shù)y=lncosx+lnα,求dy/dx。
139.
140.
五、綜合題(10題)141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
六、單選題(0題)151.
參考答案
1.C
2.C
3.B
4.D解析:
5.D解析:
6.B
7.D本題主要考查極限的充分條件.
8.C解析:
9.D解析:
10.A
11.C本題考查的知識(shí)點(diǎn)是函數(shù)間斷點(diǎn)的求法.
如果函數(shù)?(x)在點(diǎn)x0處有下列三種情況之一,則點(diǎn)x0就是?(x)的一個(gè)間斷點(diǎn).
(1)在點(diǎn)x0處,?(x)沒(méi)有定義.
(2)在點(diǎn)x0處,?(x)的極限不存在.
(3)
因此,本題的間斷點(diǎn)為x=1,所以選C.
12.C
13.sint/(1-cost)
14.A設(shè)A={該建筑物使用壽命超過(guò)50年},B={該建筑物使用壽命超過(guò)60年},由題意,P(A)=0.8,P(B)=0.6,所求概率為:
15.B
解得a=50,b=20。
16.C由:y=x3-3x得y'=3x2-3,令y’=0,得x=±1.經(jīng)計(jì)算x=-1時(shí),y=2;x=l時(shí),y=-2,故選C.
17.D
18.C
19.C
20.D解析:
21.A
22.A
23.CE(X)=0*0.5+1*0.5=0.5
24.B
25.D
26.A利用函數(shù)單調(diào)的定義.
因?yàn)閒ˊ(x)<0(a<x<b),則f(x)在區(qū)間(α,b)內(nèi)單調(diào)下降,即f(x)>f(b)>0,故選A.
27.A函數(shù)f(x)在X0處有定義不一定在該點(diǎn)連續(xù),故選A。
28.C
29.e-2/3
30.A
31.D利用函數(shù)在一點(diǎn)可導(dǎo)的定義的結(jié)構(gòu)式可知
32.B
33.C
34.A
35.B解析:
36.B
37.B
38.D
39.B
40.C
41.A
42.
43.D
44.C根據(jù)導(dǎo)數(shù)的定義式可知
45.B
46.D此題暫無(wú)解析
47.A
48.C
49.D
50.B
51.D
52.C
53.C
54.2/3
55.D
56.A
57.C
58.C
59.B
60.D
61.C
62.D
63.D
64.D
65.
66.
67.A
68.C
69.B
70.C
71.C
72.C
73.D
74.D
75.A
76.C
77.B不可能事件是指在一次試驗(yàn)中不可能發(fā)生的事件。由于只有4件次品,一次取出5件都是次品是根本不可能的,所以選B。
78.B
79.B
80.A
81.D
82.C解析:
83.A
84.A
85.(01/4)
86.A
87.C
88.D
89.C
90.B
91.B
92.A
93.A解析:
94.A
95.D
96.C
97.D
98.A
99.B
100.C此題暫無(wú)解析
101.
102.D
103.-(3/2)
104.
105.0106.f(x)+C
107.
108.先求復(fù)合函數(shù)的導(dǎo)數(shù),再求dy.
109.D
110.
111.C
112.1/4
113.(-∞-1)
114.
115.(l+xey)ey+xey因z=exey,于是
116.
117.
118.119.應(yīng)填2/5
120.
121.
122.解設(shè)F((x,y,λ)=f(x,y)+λ(x+2y-4)=x2+y2+xy+λ(x+2y-4),
123.
124.
125.
126.
127.
128
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 玻璃打膠合同書(shū)
- 《兼職心理咨詢師三方協(xié)議書(shū)》
- bimco租船合同格式
- 2025承包吧臺(tái)合同范本
- 2025年度教育培訓(xùn)機(jī)構(gòu)借款法律意見(jiàn)書(shū)制作合同3篇
- 2024年版權(quán)購(gòu)買(mǎi)轉(zhuǎn)讓合同
- 二零二五年度環(huán)保設(shè)施安裝安全協(xié)議書(shū)3篇
- 2025聘用勞動(dòng)合同標(biāo)準(zhǔn)范本
- 二零二五年度物流配送合同風(fēng)險(xiǎn)提示
- 2025承攬裝配合同范文
- 2025年四川長(zhǎng)寧縣城投公司招聘筆試參考題庫(kù)含答案解析
- 2024年06月上海廣發(fā)銀行上海分行社會(huì)招考(622)筆試歷年參考題庫(kù)附帶答案詳解
- TSG 51-2023 起重機(jī)械安全技術(shù)規(guī)程 含2024年第1號(hào)修改單
- 計(jì)算機(jī)科學(xué)導(dǎo)論
- 浙江省杭州市錢(qián)塘區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期英語(yǔ)期末試卷
- 《工程勘察設(shè)計(jì)收費(fèi)標(biāo)準(zhǔn)》(2002年修訂本)
- 2024年一級(jí)消防工程師《消防安全技術(shù)綜合能力》考試真題及答案解析
- 2024-2025學(xué)年六上科學(xué)期末綜合檢測(cè)卷(含答案)
- 安徽省森林撫育技術(shù)導(dǎo)則
- 2023七年級(jí)英語(yǔ)下冊(cè) Unit 3 How do you get to school Section A 第1課時(shí)(1a-2e)教案 (新版)人教新目標(biāo)版
- 泌尿科主任述職報(bào)告
評(píng)論
0/150
提交評(píng)論