版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年甘肅省慶陽市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.函數(shù)在(-3,3)內(nèi)展開成x的冪級數(shù)是()。
A.
B.
C.
D.
2.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
3.
4.設(shè)y=5x,則y'=A.A.5xln5
B.5x/ln5
C.x5x-1
D.5xlnx
5.()。A.
B.
C.
D.
6.則f(x)間斷點是x=()。A.2B.1C.0D.-1
7.
8.
9.
10.A.6YB.6XYC.3XD.3X^2
11.
12.下列命題中正確的有().A.A.
B.
C.
D.
13.
14.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
15.()。A.
B.
C.
D.
16.
17.A.f(1)-f(0)
B.2[f(1)-f(0)]
C.2[f(2)-f(0)]
D.
18.
19.
20.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關(guān)條件
21.
22.某技術(shù)專家,原來從事專業(yè)工作,業(yè)務(wù)精湛,績效顯著,近來被提拔到所在科室負責(zé)人的崗位。隨著工作性質(zhì)的轉(zhuǎn)變,他今后應(yīng)當(dāng)注意把自己的工作重點調(diào)整到()
A.放棄技術(shù)工作,全力以赴,抓好管理和領(lǐng)導(dǎo)工作
B.重點仍以技術(shù)工作為主,以自身為榜樣帶動下級
C.以抓管理工作為主,同時參與部分技術(shù)工作,以增強與下級的溝通和了解
D.在抓好技術(shù)工作的同時,做好管理工作
23.A.有一個拐點B.有三個拐點C.有兩個拐點D.無拐點
24.A.A.僅為x=+1B.僅為x=0C.僅為x=-1D.為x=0,±1
25.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C
26.A.A.1B.2C.1/2D.-1
27.設(shè)二元函數(shù)z=xy,則點P0(0,0)A.為z的駐點,但不為極值點B.為z的駐點,且為極大值點C.為z的駐點,且為極小值點D.不為z的駐點,也不為極值點
28.方程y'-3y'+2y=xe2x的待定特解y*應(yīng)取().A.A.Axe2x
B.(Ax+B)e2x
C.Ax2e2x
D.x(Ax+B)e2x
29.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.
B.
C.
D.
30.
A.
B.
C.
D.
31.等于().A.A.2B.1C.1/2D.0
32.
33.
34.
35.已知斜齒輪上A點受到另一齒輪對它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過A點的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
36.
37.設(shè)z=x3-3x-y,則它在點(1,0)處
A.取得極大值B.取得極小值C.無極值D.無法判定
38.微分方程y"-y'=0的通解為()。A.
B.
C.
D.
39.若收斂,則下面命題正確的是()A.A.
B.
C.
D.
40.
41.
42.
43.
44.
45.A.x2+C
B.x2-x+C
C.2x2+x+C
D.2x2+C
46.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-247.A.A.
B.B.
C.C.
D.D.
48.曲線y=x-3在點(1,1)處的切線斜率為()
A.-1B.-2C.-3D.-4
49.
50.
A.2x2+x+C
B.x2+x+C
C.2x2+C
D.x2+C
二、填空題(20題)51.
52.
53.曲線y=x3-6x的拐點坐標(biāo)為______.
54.
55.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則化為極坐標(biāo)系下的表達式為______.
56.
57.58.設(shè),且k為常數(shù),則k=______.
59.
60.若∫x0f(t)dt=2e3x-2,則f(x)=________。
61.微分方程y'+4y=0的通解為_________。
62.
63.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。
64.
65.66.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則
67.設(shè)f(x+1)=3x2+2x+1,則f(x)=_________.
68.
69.設(shè)y=f(x)在點x0處可導(dǎo),且在點x0處取得極小值,則曲線y=f(x)在點(x0,f(x0))處的切線方程為________。
70.
三、計算題(20題)71.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.72.
73.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.74.求微分方程的通解.75.將f(x)=e-2X展開為x的冪級數(shù).76.77.
78.求微分方程y"-4y'+4y=e-2x的通解.
79.
80.
81.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
82.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
83.證明:84.85.
86.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
87.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.88.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則89.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.90.求曲線在點(1,3)處的切線方程.四、解答題(10題)91.
92.
93.
94.求微分方程y"-3y'+2y=0的通解。
95.
96.
97.
98.
99.設(shè)y=xcosx,求y'.
100.
五、高等數(shù)學(xué)(0題)101.
()。
A.0B.1C.2D.4六、解答題(0題)102.
參考答案
1.B
2.C
3.A
4.A由導(dǎo)數(shù)公式可知(5x)'=5xln5,故選A。
5.A
6.Df(x)為分式,當(dāng)X=-l時,分母x+1=0,分式?jīng)]有意義,因此點x=-1為f(x)的間斷點,故選D。
7.B
8.A
9.D解析:
10.D
11.C解析:
12.B本題考查的知識點為級數(shù)的性質(zhì).
可知應(yīng)選B.通??梢詫⑵渥鳛榕卸墧?shù)發(fā)散的充分條件使用.
13.B
14.C本題考查的知識點為函數(shù)連續(xù)性的概念。由于f(x)在點x=0連續(xù),因此,故a=1,應(yīng)選C。
15.C由不定積分基本公式可知
16.D
17.D本題考查的知識點為定積分的性質(zhì);牛頓-萊布尼茨公式.
可知應(yīng)選D.
18.A解析:
19.B
20.D
21.A解析:
22.C
23.D本題考查了曲線的拐點的知識點
24.C
25.D本題考查的知識點為不定積分的第一換元積分法(湊微分法).
由題設(shè)知∫f(x)dx=F(x)+C,因此
可知應(yīng)選D.
26.C
27.A
28.D本題考查的知識點為二階常系數(shù)線性非齊次微分方程特解y*的取法:
若自由項f(x)=Pn(x)eαx,當(dāng)α不為特征根時,可設(shè)特解為
y*=Qn(x)eαx,
Qn(x)為x的待定n次多項式.
當(dāng)α為單特征根時,可設(shè)特解為
y*=xQn(x)eαx,
當(dāng)α為二重特征根時,可設(shè)特解為
y*=x2Qn(x)eαx.
所給方程對應(yīng)齊次方程的特征方程為
r2-3r+2=0.
特征根為r1=1,r2=2.
自由項f(x)=xe2x,相當(dāng)于α=2為單特征根.又因為Pn(x)為一次式,因此應(yīng)選D.
29.B本題考查的知識點為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運用.
注意到A左端為定積分,定積分存在時,其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.
由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.
30.B本題考查的知識點為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
31.D本題考查的知識點為重要極限公式與無窮小性質(zhì).
注意:極限過程為x→∞,因此
不是重要極限形式!由于x→∞時,1/x為無窮小,而sin2x為有界變量.由無窮小與有界變量之積仍為無窮小的性質(zhì)可知
32.D解析:
33.D
34.D
35.C
36.B
37.C
38.B本題考查的知識點為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。
39.D本題考查的知識點為級數(shù)的基本性質(zhì).
由級數(shù)收斂的必要條件:若收斂,則必有,可知D正確.而A,B,C都不正確.
本題常有考生選取C,這是由于考生將級數(shù)收斂的定義存在,其中誤認作是un,這屬于概念不清楚而導(dǎo)致的錯誤.
40.C
41.C
42.D
43.A
44.C
45.B本題考查的知識點為不定積分運算.
因此選B.
46.D本題考查的知識點為原函數(shù)的概念、復(fù)合函數(shù)求導(dǎo).
47.C本題考查了二重積分的積分區(qū)域的表示的知識點.
48.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(1,1)處的切線斜率為-3,故選C。
49.B
50.B
51.本題考查的知識點為平面方程和平面與直線的關(guān)系.由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,一3),因此可取n=(2,1,-3).由于平面過原點,由平面的點法式方程,可知所求平面方程為2x+y一3z=0.
52.53.(0,0)本題考查的知識點為求曲線的拐點.
依求曲線拐點的一般步驟,只需
(1)先求出y".
(2)令y"=0得出x1,…,xk.
(3)判定在點x1,x2,…,xk兩側(cè),y"的符號是否異號.若在xk的兩側(cè)y"異號,則點(xk,f(xk)為曲線y=f(x)的拐點.
y=x3-6x,
y'=3x2-6,y"=6x.
令y"=0,得到x=0.當(dāng)x=0時,y=0.
當(dāng)x<0時,y"<0;當(dāng)x>0時,y">0.因此點(0,0)為曲線y=x3-6x的拐點.
本題出現(xiàn)較多的錯誤為:填x=0.這個錯誤產(chǎn)生的原因是對曲線拐點的概念不清楚.拐點的定義是:連續(xù)曲線y=f(x)上的凸與凹的分界點稱之為曲線的拐點.其一般形式為(x0,f(x0)),這是應(yīng)該引起注意的,也就是當(dāng)判定y"在x0的兩側(cè)異號之后,再求出f(x0),則拐點為(x0,f(x0)).
注意極值點與拐點的不同之處!
54.e-3/2
55.
;本題考查的知識點為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題.
由于x2+y2≤a2,y>0可以表示為
0≤θ≤π,0≤r≤a,
因此
56.
57.本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識點。
58.本題考查的知識點為廣義積分的計算.
59.11解析:
60.6e3x
61.y=Ce-4x
62.0
63.0因為sinx為f(x)的一個原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。
64.
65.
本題考查的知識點為定積分的基本公式.
66.本題考查的知識點為二重積分的計算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長、寬都為1的正形,可知其面積為1。因此
67.
68.
69.y=f(x0)y=f(x)在點x0處可導(dǎo),且y=f(x)有極小值f(x0),這意味著x0為f(x)的極小值點。由極值的必要條件可知,必有f"(x0)=0,因此曲線y=f(x)在點(x0,f(x0))處的切線方程為y-f(x0)=f(x0)(x-x0)=0,即y=f(x0)為所求切線方程。
70.2
71.
列表:
說明
72.由一階線性微分方程通解公式有
73.
74.
75.
76.
77.
78.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
79.
80.
81.
82.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
83.
84.
85.
則
86.
87.由二重積分物理意義知
88.由等價無窮小量的定義可知89.函數(shù)的定義域為
注意
90.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機器人課件-機器人控制
- 【物理課件】阿基米的原理課件
- 《情商訓(xùn)練》課件
- 《企業(yè)安全知識演講》課件
- 單位管理制度展示合集【人事管理篇】十篇
- 單位管理制度展示大全【人力資源管理】十篇
- 豐田改善內(nèi)部課件.圖
- 單位管理制度品讀選集【員工管理篇】十篇
- 2024年汽車銷售工作計劃書(34篇)
- 食品安全監(jiān)管基礎(chǔ)與風(fēng)險防控課件
- 2024年度公務(wù)員勞動合同范本社保福利全面保障3篇
- 2025年內(nèi)蒙古包鋼公司招聘筆試參考題庫含答案解析
- 【8地星球期末】安徽省合肥市包河區(qū)智育聯(lián)盟校2023-2024學(xué)年八年級上學(xué)期期末地理試題(含解析)
- 2024-2025學(xué)年冀人版科學(xué)四年級上冊期末測試卷(含答案)
- 教科版科學(xué)一年級上冊期末測試卷含完整答案(必刷)
- 2024年危險化學(xué)品生產(chǎn)單位安全生產(chǎn)管理人員證考試題庫及答案
- 江蘇省宿遷市沭陽縣2023-2024學(xué)年八年級上學(xué)期期末英語試題
- 【8物(科)期末】合肥市廬陽區(qū)2023-2024學(xué)年八年級上學(xué)期期末質(zhì)量檢測物理試卷
- 國家安全知識教育
- 安全隱患大排查大整治專項行動方案
- 2024-2030年中國停車場建設(shè)行業(yè)發(fā)展趨勢投資策略研究報告
評論
0/150
提交評論