版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年內(nèi)蒙古自治區(qū)通遼市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)a={-1,1,2),b={3,0,4},則向量a在向量b上的投影為()A.A.
B.1
C.
D.-1
2.建立共同愿景屬于()的管理觀念。
A.科學(xué)管理B.企業(yè)再造C.學(xué)習(xí)型組織D.目標(biāo)管理
3.
4.A.A.4B.3C.2D.1
5.級(jí)數(shù)(a為大于0的常數(shù))().A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)
6.
7.
8.A.
B.
C.
D.
9.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
10.設(shè)在點(diǎn)x=1處連續(xù),則a等于()。A.-1B.0C.1D.2
11.A.A.1/3B.3/4C.4/3D.3
12.
13.
14.
15.
16.A.A.
B.B.
C.C.
D.D.
17.微分方程y"-y=ex的一個(gè)特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex
B.axex
C.aex+bx
D.axex+bx
18.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
19.點(diǎn)M(4,-3,5)到Ox軸的距離d=()A.A.
B.
C.
D.
20.A.f(2x)
B.2f(x)
C.f(-2x)
D.-2f(x)
二、填空題(20題)21.已知平面π:2x+y一3z+2=0,則過原點(diǎn)且與π垂直的直線方程為________.
22.
23.設(shè)y=2x+sin2,則y'=______.
24.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則
25.
26.設(shè)f(x,y)=sin(xy2),則df(x,y)=______.
27.
28.設(shè)f(x)=x(x-1),則f'(1)=__________。
29.
30.
31.
32.∫x(x2-5)4dx=________。
33.設(shè)=3,則a=________。
34.
35.
36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.
42.
43.
44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
45.求微分方程y"-4y'+4y=e-2x的通解.
46.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
47.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
48.將f(x)=e-2X展開為x的冪級(jí)數(shù).
49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
50.
51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
52.求曲線在點(diǎn)(1,3)處的切線方程.
53.證明:
54.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
55.
56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
57.
58.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
59.求微分方程的通解.
60.
四、解答題(10題)61.
62.
63.
64.求y=xex的極值及曲線的凹凸區(qū)間與拐點(diǎn).
65.
66.
67.
68.將f(x)=e-2x展開為x的冪級(jí)數(shù).
69.
70.
五、高等數(shù)學(xué)(0題)71.
_________當(dāng)a=__________時(shí)f(x)在(一∞,+∞)內(nèi)連續(xù)。
六、解答題(0題)72.計(jì)算,其中D是由x2+y2=1,y=x及x軸所圍成的第一象域的封閉圖形.
參考答案
1.B
2.C解析:建立共同愿景屬于學(xué)習(xí)型組織的管理觀念。
3.C
4.C
5.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)絕對(duì)收斂與條件收斂的概念.
注意為p=2的p級(jí)數(shù),因此為收斂級(jí)數(shù),由比較判別法可知收斂,故絕對(duì)收斂,應(yīng)選A.
6.A解析:
7.C解析:
8.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
9.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
10.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。
由于y為分段函數(shù),x=1為其分段點(diǎn)。在x=1的兩側(cè)f(x)的表達(dá)式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于
當(dāng)x=1為y=f(x)的連續(xù)點(diǎn)時(shí),應(yīng)有存在,從而有,即
a+1=2。
可得:a=1,因此選C。
11.B
12.B解析:
13.A
14.B解析:
15.D
16.B本題考查了已知積分函數(shù)求原函數(shù)的知識(shí)點(diǎn)
17.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。
方程y"-y=ex中自由項(xiàng)f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。
18.A本題考查的知識(shí)點(diǎn)為無窮級(jí)數(shù)的收斂性。
19.B
20.A由可變上限積分求導(dǎo)公式可知因此選A.
21.
本題考查的知識(shí)點(diǎn)為直線方程和直線與平面的關(guān)系.
由于平面π與直線1垂直,則直線的方向向量s必定平行于平面的法向量n,因此可以取
22.
23.2xln2本題考查的知識(shí)點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.
本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.
Y'=(2x+sin2)'=(2x)'+(sin2)'=2xln2.
本題中常見的錯(cuò)誤有
(sin2)'=cos2.
這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為一個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
(sin2)'=0.
相仿(cos3)'=0,(ln5)'=0,(e1/2)'=0等.
請(qǐng)考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
24.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此
25.
26.y2cos(xy2)dx+2xycos(xy2)dydf(x,y)=cos(xy2)d(xy2)=cos(xy2)(y2dx+2xydy)=y2cos(xy2)dx+2xycos(xy2)dy也可先求出,而得出df(x,y).
27.
28.
29.(1+x)ex(1+x)ex
解析:
30.
31.
32.
33.
34.
本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系,左極限、右極限與極限的關(guān)系.
35.e1/2e1/2
解析:
36.π/2π/2解析:
37.38.本題考查的知識(shí)點(diǎn)為重要極限公式。
39.
40.
41.
42.
則
43.
44.
45.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
46.函數(shù)的定義域?yàn)?/p>
注意
47.由二重積分物理意義知
48.
49.
50.
51.
列表:
說明
52.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
53.
54.由等價(jià)無窮小量的定義可知
55.
56.
57.由一階線性微分方程通解公式有
58.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
59.
60.
61.
62.解如圖所示
63.本題考查的知識(shí)點(diǎn)為定積分的幾何應(yīng)用:利用定積分表示平面圖形的面積;利用定積分求繞坐標(biāo)軸旋轉(zhuǎn)而成旋轉(zhuǎn)體體積.
所給平面圖形如圖4—1中陰影部分所示,
注這是常見的考試題型,考生應(yīng)該熟練掌握.64.y=xex
的定義域?yàn)?-∞,+∞),y'=(1+x)ex,y"=(2+x)ex.令y'=0,得駐點(diǎn)x1=-1.令y"=0,得x2=-2.
極小值點(diǎn)為x=-1,極小值為
曲線的凹區(qū)間為(-2,+∞);曲線的凸區(qū)間為(-∞,-2);拐點(diǎn)為本題考查的知識(shí)點(diǎn)為:描述函數(shù)幾何性態(tài)的綜合問題.
65.
66.本題考查的知識(shí)點(diǎn)為將函數(shù)展開為x的冪級(jí)數(shù).
【解題指導(dǎo)】
將函數(shù)展開為x的冪級(jí)數(shù)通常利用間接法.先將f(x)與標(biāo)準(zhǔn)展開式中的函數(shù)對(duì)照,以便確定使用相應(yīng)的公式.如果f(x)可以經(jīng)過恒等變形變?yōu)闃?biāo)準(zhǔn)展開式中函數(shù)的和、差形式,則可以先變形.
67.
68.解
69.
7
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 保護(hù)知識(shí)產(chǎn)權(quán)我們?cè)谛袆?dòng)
- 踝關(guān)節(jié)鏡下后側(cè)入路切除跟距骨橋與(足母)長(zhǎng)屈肌腱減壓松解術(shù)治療跟距骨橋的臨床研究
- 初級(jí)會(huì)計(jì)經(jīng)濟(jì)法基礎(chǔ)-初級(jí)會(huì)計(jì)《經(jīng)濟(jì)法基礎(chǔ)》??荚嚲?14
- 溫度差下一維兩分量玻色氣體的輸運(yùn)性質(zhì)
- 二零二五版消防通道擴(kuò)建整改工程合同
- 二零二五年度汽車銷售委托代理合同規(guī)范文本3篇
- 二零二五年度綠色能源汽車抵押借款合同2篇
- 二零二五版?zhèn)€人房產(chǎn)交易合同范本(含家具家電清單)2篇
- 二零二五版水陸聯(lián)運(yùn)貨物運(yùn)輸代理服務(wù)合同范本6篇
- 國家安全教育宣傳日
- 新疆烏魯木齊地區(qū)2025年高三年級(jí)第一次質(zhì)量監(jiān)測(cè)生物學(xué)試卷(含答案)
- 衛(wèi)生服務(wù)個(gè)人基本信息表
- 醫(yī)學(xué)脂質(zhì)的構(gòu)成功能及分析專題課件
- 苗圃建設(shè)項(xiàng)目施工組織設(shè)計(jì)范本
- 高技能人才培養(yǎng)的策略創(chuàng)新與實(shí)踐路徑
- 廣東省湛江市廉江市2023-2024學(xué)年八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 學(xué)校食品安全舉報(bào)投訴處理制度
- 2024年湖北省知名中小學(xué)教聯(lián)體聯(lián)盟中考語文一模試卷
- 安徽省蕪湖市2023-2024學(xué)年高一上學(xué)期期末考試 生物 含解析
- 交叉口同向可變車道動(dòng)態(tài)控制與信號(hào)配時(shí)優(yōu)化研究
- 燃?xì)庑袠I(yè)有限空間作業(yè)安全管理制度
評(píng)論
0/150
提交評(píng)論