版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年四川省內(nèi)江市成考專升本高等數(shù)學一自考真題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(50題)1.A.A.e-x+CB.-e-x+CC.ex+CD.-ex+C
2.()。A.3B.2C.1D.0
3.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
4.f(x)在[a,b]上可導是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無關(guān)條件
5.
6.則f(x)間斷點是x=()。A.2B.1C.0D.-1
7.A.A.xy
B.yxy
C.(x+1)yln(x+1)
D.y(x+1)y-1
8.
9.
10.設(shè)在點x=1處連續(xù),則a等于()。A.-1B.0C.1D.2
11.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.
B.
C.
D.
12.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
13.下列關(guān)于動載荷的敘述不正確的一項是()。
A.動載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點的加速度必須考慮,而后者可忽略不計
B.勻速直線運動時的動荷因數(shù)為
C.自由落體沖擊時的動荷因數(shù)為
D.增大靜變形是減小沖擊載荷的主要途徑
14.
15.用多頭鉆床在水平放置的工件上同時鉆四個直徑相同的孔,如圖所示,每個鉆頭的切屑力偶矩為M1=M2=M3=M4=一15N·m,則工件受到的總切屑力偶矩為()。
A.30N·m,逆時針方向B.30N·m,順時針方向C.60N·m,逆時針方向D.60N·m,順時針方向
16.設(shè)f(x)=x3+x,則等于()。A.0
B.8
C.
D.
17.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域為()。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]
18.由曲線y=1/X,直線y=x,x=2所圍面積為
A.A.
B.B.
C.C.
D.D.
19.
20.
21.
22.設(shè)二元函數(shù)z=xy,則點P0(0,0)A.為z的駐點,但不為極值點B.為z的駐點,且為極大值點C.為z的駐點,且為極小值點D.不為z的駐點,也不為極值點
23.
24.設(shè)區(qū)域D={(x,y)|-1≤x≤1,0≤y≤2},().A.1B.2C.3D.4
25.
26.
27.方程x2+2y2+3z2=1表示的二次曲面是
A.圓錐面B.旋轉(zhuǎn)拋物面C.球面D.橢球面
28.前饋控制、同期控制和反饋控制劃分的標準是()
A.按照時機、對象和目的劃分B.按照業(yè)務范圍劃分C.按照控制的順序劃分D.按照控制對象的全面性劃分
29.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無水平漸近線,又無鉛直漸近線
30.設(shè)區(qū)域,將二重積分在極坐標系下化為二次積分為()A.A.
B.
C.
D.
31.當x→0時,x是ln(1+x2)的
A.高階無窮小B.同階但不等價無窮小C.等價無窮小D.低階無窮小
32.為了提高混凝土的抗拉強度,可在梁中配置鋼筋。若矩形截面梁的彎矩圖如圖所示,梁中鋼筋(圖中虛線所示)配置最為合理的是()。
A.
B.
C.
D.
33.
34.
35.
36.
37.設(shè)y=2x,則dy=A.A.x2x-1dx
B.2xdx
C.(2x/ln2)dx
D.2xln2dx
38.
39.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散40.().A.A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸41.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)42.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
43.
44.()。A.0
B.1
C.2
D.+∞
45.
46.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導,f'(x)>0,則f(x)在(0,1)內(nèi)A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)47.A.2B.1C.1/2D.-148.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4
49.
50.
二、填空題(20題)51.
52.53.54.
55.
56.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。57.若=-2,則a=________。
58.曲線y=x/2x-1的水平漸近線方程為__________。
59.
60.
61.
62.
63.64.函數(shù)的間斷點為______.65.
66.
67.
68.
69.
70.
三、計算題(20題)71.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.72.求微分方程的通解.
73.求微分方程y"-4y'+4y=e-2x的通解.
74.證明:75.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.76.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
77.求曲線在點(1,3)處的切線方程.78.79.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
80.
81.82.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.83.
84.
85.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
86.
87.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.88.當x一0時f(x)與sin2x是等價無窮小量,則89.將f(x)=e-2X展開為x的冪級數(shù).90.四、解答題(10題)91.
92.
93.(本題滿分8分)計算94.設(shè)y=y(x)由確定,求dy.
95.
96.(本題滿分10分)設(shè)F(x)為f(x)的-個原函數(shù),且f(x)=xlnx,求F(x).
97.
98.
99.
100.計算五、高等數(shù)學(0題)101.設(shè)生產(chǎn)某產(chǎn)品利潤L(x)=5000+x一0.0001x2百元[單位:件],問生產(chǎn)多少件時利潤最大,最大利潤是多少?
六、解答題(0題)102.
參考答案
1.B
2.A
3.Dy=ex+e-x,則y'=ex-e-x,當x>0時,y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.
4.B∵可導一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪强煞e的充分條件
5.D
6.Df(x)為分式,當X=-l時,分母x+1=0,分式?jīng)]有意義,因此點x=-1為f(x)的間斷點,故選D。
7.C
8.C
9.A
10.C本題考查的知識點為函數(shù)連續(xù)性的概念。
由于y為分段函數(shù),x=1為其分段點。在x=1的兩側(cè)f(x)的表達式不同。因此討論y=f(x)在x=1處的連續(xù)性應該利用左連續(xù)與右連續(xù)的概念。由于
當x=1為y=f(x)的連續(xù)點時,應有存在,從而有,即
a+1=2。
可得:a=1,因此選C。
11.B本題考查的知識點為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導公式的運用.
注意到A左端為定積分,定積分存在時,其值一定為常數(shù),常量的導數(shù)等于零.因此A不正確.
由可變上限積分求導公式可知B正確.C、D都不正確.
12.B本題考查的知識點為線性常系數(shù)微分方程解的結(jié)構(gòu).
已知y1,y2為二階線性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個解,由解的結(jié)構(gòu)定理可知C1y1+C2y2為所給方程的解,因此應排除D.又由解的結(jié)構(gòu)定理可知,當y1,y2線性無關(guān)時,C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應該選B.
本題中常見的錯誤是選C.這是由于忽略了線性常系數(shù)微分方程解的結(jié)構(gòu)定理中的條件所導致的錯誤.解的結(jié)構(gòu)定理中指出:“若y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個線性無關(guān)的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒有指出)y1,y2為線性無關(guān)的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結(jié)構(gòu)定理知C1y1+C2y2為方程的解,因此應選B.
13.C
14.C解析:
15.D
16.A本題考查的知識點為定積分的對稱性質(zhì)。由于所給定積分的積分區(qū)間為對稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對稱性質(zhì)可知
可知應選A。
17.B∵一1≤x一1≤1∴0≤x≤2。
18.B本題考查了曲線所圍成的面積的知識點,
曲線y=1/X與直線y=x,x=2所圍成的區(qū)域D如下圖所示,
19.D
20.B
21.D
22.A
23.C
24.D的值等于區(qū)域D的面積,D為邊長為2的正方形面積為4,因此選D。
25.B
26.A
27.D本題考查了二次曲面的知識點。
28.A解析:根據(jù)時機、對象和目的來劃分,控制可分為前饋控制、同期控制和反饋控制。
29.A
30.A本題考查的知識點為將二重積分化為極坐標系下的二次積分.
由于在極坐標系下積分區(qū)域D可以表示為
0≤θ≤π,0≤r≤a.
因此
故知應選A.
31.D解析:
32.D
33.C
34.A
35.C
36.A解析:
37.Dy=2x,y'=2xln2,dy=y'dx=2xln2dx,故選D。
38.D
39.D
40.B本題考查的知識點為利用一階導數(shù)符號判定函數(shù)的單調(diào)性和利用二階導數(shù)符號判定曲線的凹凸性.
41.C本題考查的知識點為可變限積分求導.
由于當f(x)連續(xù)時,,可知應選C.
42.D可以將方程認作可分離變量方程;也可以將方程認作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認作一階線性微分方程.由通解公式可得解法3認作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
43.B
44.B
45.A解析:
46.B由于f'(x)>0,可知.f(x)在(0,1)內(nèi)單調(diào)增加。因此選B。
47.A本題考查了函數(shù)的導數(shù)的知識點。
48.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.
49.B
50.B
51.11解析:
52.
本題考查的知識點為初等函數(shù)的求導運算.
本題需利用導數(shù)的四則運算法則求解.
本題中常見的錯誤有
這是由于誤將sin2認作sinx,事實上sin2為-個常數(shù),而常數(shù)的導數(shù)為0,即
請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導數(shù)必定為0.53.本題考查的知識點為定積分的基本公式。54.1/2本題考查的知識點為極限運算.
由于
55.6x256.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx57.因為=a,所以a=-2。
58.y=1/2
59.2/32/3解析:
60.y=f(0)
61.
本題考查的知識點為二元函數(shù)的偏導數(shù)計算.
62.2
63.64.本題考查的知識點為判定函數(shù)的間斷點.
僅當,即x=±1時,函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點。65.1
66.(12)
67.
68.yf''(xy)+f'(x+y)+yf''(x+y)
69.
70.eyey
解析:
71.
72.
73.解:原方程對應的齊次方程為y"-4y'+4y=0,
74.
75.
76.
77.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
78.
79.
列表:
說明
80.
81.
82.由二重積分物理意義知
83.由一階線性微分方程通解公式有
84.
85.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
86.
則
87.函數(shù)的定義域為
注意
88.由等價無窮小量的定義可知
89.
90.
91.
92.93.本題考查的知識點為計算反常積分.
計算反常積分應依反常積分收斂性定義,將其轉(zhuǎn)化為定積分與極限兩種運算.
94.
;本題考查的知識點為可變上限積分求導和隱函數(shù)的求導.
求解的關(guān)鍵是將所給方程認作y為x的隱函數(shù),在對可變上限積分求導數(shù)時,將其上限y認作為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游業(yè)務賦能增長
- 旅游業(yè)績超越預期
- 2025年智能制造園區(qū)廠房拆遷補償及產(chǎn)業(yè)布局協(xié)議4篇
- 個人投資企業(yè)資產(chǎn)轉(zhuǎn)讓協(xié)議版A版
- 2025柴油終端零售居間合作協(xié)議書4篇
- 2025年度茶葉產(chǎn)品研發(fā)與技術(shù)轉(zhuǎn)移合同4篇
- 2025年度海上風電場建設(shè)分包工程合同4篇
- 2025年度教育培訓課程定制合同書4篇
- 專業(yè)服裝面料供應協(xié)議范本版B版
- 二零二四二手設(shè)備購買與維修合同2篇
- 2024-2025學年成都高新區(qū)七上數(shù)學期末考試試卷【含答案】
- 定額〔2025〕1號文-關(guān)于發(fā)布2018版電力建設(shè)工程概預算定額2024年度價格水平調(diào)整的通知
- 2025年浙江杭州市西湖區(qū)專職社區(qū)招聘85人歷年高頻重點提升(共500題)附帶答案詳解
- 《數(shù)學廣角-優(yōu)化》說課稿-2024-2025學年四年級上冊數(shù)學人教版
- “懂你”(原題+解題+范文+話題+技巧+閱讀類素材)-2025年中考語文一輪復習之寫作
- 2025年景觀照明項目可行性分析報告
- 2025年江蘇南京地鐵集團招聘筆試參考題庫含答案解析
- 2025年度愛讀書學長參與的讀書項目投資合同
- 電力系統(tǒng)分析答案(吳俊勇)(已修訂)
- 化學-河北省金太陽質(zhì)檢聯(lián)盟2024-2025學年高三上學期12月第三次聯(lián)考試題和答案
- 期末復習試題(試題)-2024-2025學年四年級上冊數(shù)學 北師大版
評論
0/150
提交評論