2023年四川省遂寧市成考專(zhuān)升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)
2023年四川省遂寧市成考專(zhuān)升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)
2023年四川省遂寧市成考專(zhuān)升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)
2023年四川省遂寧市成考專(zhuān)升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)
2023年四川省遂寧市成考專(zhuān)升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年四川省遂寧市成考專(zhuān)升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.單位長(zhǎng)度扭轉(zhuǎn)角θ與下列哪項(xiàng)無(wú)關(guān)()。

A.桿的長(zhǎng)度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)

2.

3.

4.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。

A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)

B.勻速直線(xiàn)運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為

C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為

D.增大靜變形是減小沖擊載荷的主要途徑

5.方程y+2y+y=0的通解為

A.c1+c2e-x

B.e-x(c1+C2x)

C.c1e-x

D.c1e-x+c2ex

6.

7.設(shè)y=cos4x,則dy=()。A.

B.

C.

D.

8.過(guò)點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().

A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

9.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2

10.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.

11.函數(shù)y=x3-3x的單調(diào)遞減區(qū)間為()A.A.(-∞,-1]

B.[-1,1]

C.[1,+∞)

D.(-∞,+∞)

12.

13.

14.A.0B.2C.2f(-1)D.2f(1)

15.

16.

17.當(dāng)x→0時(shí),x是ln(1+x2)的

A.高階無(wú)窮小B.同階但不等價(jià)無(wú)窮小C.等價(jià)無(wú)窮小D.低階無(wú)窮小18.A.A.

B.

C.

D.

19.A.e-2

B.e-1

C.e

D.e2

20.設(shè)f(x)為連續(xù)函數(shù),則(∫f5x)dx)'等于()A.A.

B.5f(x)

C.f(5x)

D.5f(5x)

21.下列()不是組織文化的特征。

A.超個(gè)體的獨(dú)特性B.不穩(wěn)定性C.融合繼承性D.發(fā)展性22.A.6YB.6XYC.3XD.3X^2

23.A.等價(jià)無(wú)窮小

B.f(x)是比g(x)高階無(wú)窮小

C.f(x)是比g(x)低階無(wú)窮小

D.f(x)與g(x)是同階但非等價(jià)無(wú)窮小

24.

25.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線(xiàn)的兩個(gè)力的作用,則()。

A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡26.微分方程y"-y=ex的一個(gè)特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex

B.axex

C.aex+bx

D.axex+bx

27.當(dāng)x→0時(shí),2x+x2是x的A.A.等價(jià)無(wú)窮小B.較低階無(wú)窮小C.較高階無(wú)窮小D.同階但不等價(jià)的無(wú)窮小

28.

29.

30.

31.

32.用待定系數(shù)法求微分方程y"-y=xex的一個(gè)特解時(shí),特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex

B.(αx2+b)ex

C.αx2ex

D.(αx+b)ex

33.設(shè)z=x2y,則等于()。A.2yx2y-1

B.x2ylnx

C.2x2y-1lnx

D.2x2ylnx

34.

35.

36.A.沒(méi)有漸近線(xiàn)B.僅有水平漸近線(xiàn)C.僅有鉛直漸近線(xiàn)D.既有水平漸近線(xiàn),又有鉛直漸近線(xiàn)

37.

38.A.A.

B.

C.

D.

39.

40.A.0

B.1

C.e

D.e2

41.()。A.

B.

C.

D.

42.

43.

44.則f(x)間斷點(diǎn)是x=()。A.2B.1C.0D.-1

45.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。

A.vC=2uB

B.uC=θBα

C.vC=uB+θBα

D.vC=vB

46.設(shè)f(0)=0,且存在,則等于().A.A.f'(x)B.f'(0)C.f(0)D.f(x)47.曲線(xiàn)y=lnx-2在點(diǎn)(e,-1)的切線(xiàn)方程為()A.A.

B.

C.

D.

48.

49.

50.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4二、填空題(20題)51.廣義積分.52.

53.

54.

55.設(shè)y=cosx,則y'=______

56.

57.

58.

59.

60.

61.

62.

63.64.65.

66.

67.

68.設(shè)z=x3y2,則=________。

69.

70.三、計(jì)算題(20題)71.72.73.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).74.75.證明:

76.

77.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則78.

79.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.80.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.81.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

82.

83.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.84.求微分方程的通解.

85.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

86.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

87.

88.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).89.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

90.求微分方程y"-4y'+4y=e-2x的通解.

四、解答題(10題)91.求微分方程xy'-y=x2的通解.

92.93.求由曲線(xiàn)y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)一周所成旋轉(zhuǎn)體的體積.

94.

95.

96.

97.

98.

99.求曲線(xiàn)y=x2、直線(xiàn)y=2-x與x軸所圍成的平面圖形的面積A及該圖形繞y軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vy。

100.五、高等數(shù)學(xué)(0題)101.

_________當(dāng)a=__________時(shí)f(x)在(一∞,+∞)內(nèi)連續(xù)。

六、解答題(0題)102.

參考答案

1.A

2.D

3.C

4.C

5.B

6.C

7.B

8.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組

故選A.

9.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

10.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.

f(x)=2sinx,

f'(x)=2(sinx)'=2cosx,

可知應(yīng)選B.

11.B

12.C

13.D

14.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。

15.C

16.B

17.D解析:

18.D

19.D由重要極限公式及極限運(yùn)算性質(zhì),可知故選D.

20.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì).

(∫f5x)dx)'為將f(5x)先對(duì)x積分,后對(duì)x求導(dǎo).若設(shè)g(x)=f(5x),則(∫f5x)dx)'=(∫g(x)dx)'表示先將g(x)對(duì)x積分,后對(duì)x求導(dǎo),因此(∫f(5x)dx)'=(∫g(x)dx)'=g(x)=f(5x).

可知應(yīng)選C.

21.B解析:組織文化的特征:(1)超個(gè)體的獨(dú)特性;(2)相對(duì)穩(wěn)定性;(3)融合繼承性;(4)發(fā)展性。

22.D

23.D

24.A解析:

25.C

26.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。

方程y"-y=ex中自由項(xiàng)f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。

27.D

28.B

29.A

30.C

31.D解析:

32.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1

y"-y=xex中自由項(xiàng)f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。

所以選A。

33.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。對(duì)于z=x2y,求的時(shí)候,要將z認(rèn)定為x的冪函數(shù),從而可知應(yīng)選A。

34.D解析:

35.C

36.D本題考查了曲線(xiàn)的漸近線(xiàn)的知識(shí)點(diǎn),

37.C

38.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo).

可知應(yīng)選C.

39.B

40.B為初等函數(shù),且點(diǎn)x=0在的定義區(qū)間內(nèi),因此,故選B.

41.A

42.A

43.A

44.Df(x)為分式,當(dāng)X=-l時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)x=-1為f(x)的間斷點(diǎn),故選D。

45.C

46.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由于存在,因此

可知應(yīng)選B.

47.D

48.B

49.A解析:

50.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.51.1本題考查的知識(shí)點(diǎn)為廣義積分,應(yīng)依廣義積分定義求解.

52.本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.

53.y=lnx+Cy=lnx+C解析:

54.π/8

55.-sinx

56.

57.1

58.0

59.

60.

解析:

61.

62.

63.064.

65.

66.

67.e268.由z=x3y2,得=2x3y,故dz=3x2y2dx+2x3ydy,。

69.

70.

71.

72.

73.

74.

75.

76.

77.由等價(jià)無(wú)窮小量的定義可知78.由一階線(xiàn)性微分方程通解公式有

79.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.

因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)

(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為

80.

81.

82.

83.

84.

85.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%86.由二重積分物理意義知

87.

88.

列表:

說(shuō)明

89.函數(shù)的定義域?yàn)?/p>

注意

90.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

91.將方程化為標(biāo)準(zhǔn)形式本題考查的知識(shí)點(diǎn)為求解一階線(xiàn)性微分方程.

求解一階線(xiàn)性微分方程??梢圆捎脙煞N解法:

92.

93.所給曲線(xiàn)圍成的平面圖形如圖1-3所示.

解法1利用定積分求平面圖形的面積.由于的解為x=1,y=2,可得

解法2利用二重積分求平面圖形面積.由于

的解為x=1,y=2,

求旋轉(zhuǎn)體體積與解法1同.本題考查的知識(shí)點(diǎn)有兩個(gè):利用定積分求平面圖形

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論