版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年山東省菏澤市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.A.A.
B.
C.
D.
2.函數(shù)y=f(x)在(a,b)內(nèi)二階可導(dǎo),且f'(x)>0,f"(x)<0,則曲線y=f(x)在(a,b)內(nèi)().
A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸
3.下列函數(shù)中,在x=0處可導(dǎo)的是()
A.y=|x|
B.
C.y=x3
D.y=lnx
4.A.A.2B.1C.1/2D.0
5.當(dāng)a→0時(shí),2x2+3x是x的().A.A.高階無窮小B.等價(jià)無窮小C.同階無窮小,但不是等價(jià)無窮小D.低階無窮小
6.設(shè)方程y''-2y'-3y=f(x)有特解y*,則它的通解為A.y=C1e-x+C2e3x+y*
B.y=C1e-x+C2e3x
C.y=C1xe-x+C2e3x+y*
D.y=C1ex+C2e-3x+y*
7.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-3
8.A.A.1
B.
C.m
D.m2
9.A.A.
B.B.
C.C.
D.D.
10.輥軸支座(又稱滾動(dòng)支座)屬于()。
A.柔索約束B.光滑面約束C.光滑圓柱鉸鏈約束D.連桿約束
11.
12.
13.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
14.
15.
16.已知作用在簡支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
17.下列關(guān)系正確的是()。A.
B.
C.
D.
18.
19.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要
20.在初始發(fā)展階段,國際化經(jīng)營的主要方式是()
A.直接投資B.進(jìn)出口貿(mào)易C.間接投資D.跨國投資
21.
22.
23.。A.
B.
C.
D.
24.若xo為f(x)的極值點(diǎn),則()A.A.f(xo)必定存在,且f(xo)=0
B.f(xo)必定存在,但f(xo)不一定等于零
C.f(xo)可能不存在
D.f(xo)必定不存在
25.A.-1
B.0
C.
D.1
26.微分方程y"+y'=0的通解為
A.y=Ce-x
B.y=e-x+C
C.y=C1e-x+C2
D.y=e-x
27.
28.
29.下列命題中正確的有().A.A.
B.
C.
D.
30.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
31.
32.
33.A.1/x2
B.1/x
C.e-x
D.1/(1+x)2
34.
35.A.sin(2x-1)+C
B.
C.-sin(2x-1)+C
D.
36.
37.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解38.()。A.
B.
C.
D.
39.
40.
41.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。
A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)
B.勻速直線運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為
C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為
D.增大靜變形是減小沖擊載荷的主要途徑
42.()A.A.
B.
C.
D.
43.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
44.A.2x
B.3+2x
C.3
D.x2
45.
46.()。A.
B.
C.
D.
47.
48.
49.A.-3-xln3
B.-3-x/ln3
C.3-x/ln3
D.3-xln3
50.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.
B.
C.
D.
二、填空題(20題)51.設(shè)f(x)=esinx,則=________。52.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則化為極坐標(biāo)系下的表達(dá)式為______.53.
54.
55.設(shè)f(x)=xex,則f'(x)__________。
56.57.58.設(shè)當(dāng)x≠0時(shí),在點(diǎn)x=0處連續(xù),當(dāng)x≠0時(shí),F(xiàn)(x)=-f(x),則F(0)=______.59.
60.
61.
62.若f'(x0)=1,f(x0)=0,則63.
64.
65.f(x)=sinx,則f"(x)=_________。
66.
67.
68.69.70.求三、計(jì)算題(20題)71.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則72.73.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.74.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.75.
76.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.77.78.求曲線在點(diǎn)(1,3)處的切線方程.
79.求微分方程y"-4y'+4y=e-2x的通解.
80.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
81.
82.求微分方程的通解.
83.
84.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).85.將f(x)=e-2X展開為x的冪級(jí)數(shù).86.
87.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
88.89.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.90.證明:四、解答題(10題)91.
92.求二元函數(shù)z=x2-xy+y2+x+y的極值。
93.設(shè)y=x2+2x,求y'。
94.計(jì)算,其中區(qū)域D滿足x2+y2≤1,x≥0,y≥0.
95.計(jì)算∫xsinxdx。
96.
97.
98.
99.設(shè)y=ln(1+x2),求dy。100.已知f(x)在[a,b]上連續(xù)且f(a)=f(b),在(a,b)內(nèi)f''(x)存在,連接A(a,f(a)),B(b,f(b))兩點(diǎn)的直線交曲線y=f(x)于C(c,f(c))且a<c<b,試證在(a,b)內(nèi)至少有一點(diǎn)ξ使得f''(ξ)=0.五、高等數(shù)學(xué)(0題)101.當(dāng)x→0+時(shí),()與x是等價(jià)無窮小量。
A.
B.1n(1+x)
C.x2(x+1)
D.
六、解答題(0題)102.設(shè)存在,求f(x).
參考答案
1.D
2.B解析:本題考查的知識(shí)點(diǎn)為利用一階導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.
由于在(a,b)內(nèi)f'(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,又由于f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹,可知應(yīng)選B.
3.C選項(xiàng)A中,y=|x|,在x=0處有尖點(diǎn),即y=|x|在x=0處不可導(dǎo);選項(xiàng)B中,在x=0處不存在,即在x=0處不可導(dǎo);選項(xiàng)C中,y=x3,y'=3x2處處存在,即y=x3處處可導(dǎo),也就在x=0處可導(dǎo);選項(xiàng)D中,y=lnx,在x=0處不存在,y=lnx在x=0處不可導(dǎo)(事實(shí)上,在x=0點(diǎn)就沒定義).
4.D
5.C本題考查的知識(shí)點(diǎn)為無窮小階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時(shí),2x3+3x是x的同階無窮小,但不是等價(jià)無窮小,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無窮小盧與無窮小α的階的關(guān)系時(shí),要判定極限
這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.
6.A考慮對(duì)應(yīng)的齊次方程y''-2y'-3y==0的通解.特征方程為r2-2r-3=0,所以r1=-1,r2=3,所以y''-2y'-3y==0的通解為,所以原方程的通解為y=C1e-x+C2e3x+y*.
7.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.
8.D本題考查的知識(shí)點(diǎn)為重要極限公式或等價(jià)無窮小量代換.
解法1
解法2
9.C本題考查了二重積分的積分區(qū)域的表示的知識(shí)點(diǎn).
10.C
11.D解析:
12.C
13.B
14.A解析:
15.D
16.D
17.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)。
18.C
19.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
20.B解析:在初始投資階段,企業(yè)從事國際化經(jīng)營活動(dòng)的主要特點(diǎn)是活動(dòng)方式主要以進(jìn)出口貿(mào)易為主。
21.B
22.A
23.A本題考查的知識(shí)點(diǎn)為定積分換元積分法。
因此選A。
24.C
25.C
26.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。
27.A解析:
28.B
29.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的性質(zhì).
可知應(yīng)選B.通??梢詫⑵渥鳛榕卸?jí)數(shù)發(fā)散的充分條件使用.
30.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.
31.C解析:
32.B解析:
33.A本題考查了反常積分的斂散性的知識(shí)點(diǎn)。
34.B解析:
35.B本題考查的知識(shí)點(diǎn)為不定積分換元積分法。
因此選B。
36.D
37.B本題考查的知識(shí)點(diǎn)為線性常系數(shù)微分方程解的結(jié)構(gòu).
已知y1,y2為二階線性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個(gè)解,由解的結(jié)構(gòu)定理可知C1y1+C2y2為所給方程的解,因此應(yīng)排除D.又由解的結(jié)構(gòu)定理可知,當(dāng)y1,y2線性無關(guān)時(shí),C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應(yīng)該選B.
本題中常見的錯(cuò)誤是選C.這是由于忽略了線性常系數(shù)微分方程解的結(jié)構(gòu)定理中的條件所導(dǎo)致的錯(cuò)誤.解的結(jié)構(gòu)定理中指出:“若y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)線性無關(guān)的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒有指出)y1,y2為線性無關(guān)的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結(jié)構(gòu)定理知C1y1+C2y2為方程的解,因此應(yīng)選B.
38.C
39.D
40.B
41.C
42.C
43.D由拉格朗日定理
44.A由導(dǎo)數(shù)的基本公式及四則運(yùn)算法則,有故選A.
45.D
46.C由不定積分基本公式可知
47.C
48.D
49.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.
50.C51.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。
52.
;本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題.
由于x2+y2≤a2,y>0可以表示為
0≤θ≤π,0≤r≤a,
因此
53.-24.
本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.
若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:
54.3
55.(1+x)ex
56.
本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
57.F(sinx)+C58.1本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
由連續(xù)性的定義可知,若F(x)在點(diǎn)x=0連續(xù),則必有,由題設(shè)可知
59.
60.
61.162.-1
63.
64.(12)
65.-sinx
66.e1/2e1/2
解析:
67.
68.
69.
本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
所給級(jí)數(shù)為缺項(xiàng)情形,
70.=0。71.由等價(jià)無窮小量的定義可知
72.
73.
74.
75.
則
76.函數(shù)的定義域?yàn)?/p>
注意
77.78.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
79.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
80.
81.
82.
83.
84.
列表:
說明
85.86.由一階線性微分方程通解公式有
87.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《曾子殺豬》課件-2024年教學(xué)新選擇
- 2024年企業(yè)競爭策略:SWOT分析法的實(shí)踐探索
- 2024年白公鵝養(yǎng)殖業(yè)發(fā)展論壇:機(jī)遇與挑戰(zhàn)并存
- 2024年畜牧業(yè)經(jīng)營管理教案:實(shí)踐與啟示
- 面向2024年的教育革新:《鐵杵成針》教學(xué)課件探索
- 《寓言四則》課件的突破
- 2024年物業(yè)管理新視野:保利物業(yè)培訓(xùn)手冊(cè)深度分析
- 2024年5S培訓(xùn):打造高效辦公室
- 2024年Flash培訓(xùn)課件:促進(jìn)跨學(xué)科交流與合作
- PFC2D技術(shù)培訓(xùn)課件:2024年電力電子領(lǐng)域高級(jí)教程
- 物業(yè)管理風(fēng)險(xiǎn)管控
- 電泳-厚-度-檢-測(cè)-記錄
- 服務(wù)采購詢比價(jià)表
- 衛(wèi)生院會(huì)議制度
- 小學(xué) 四年級(jí) 體育水平二 基本運(yùn)動(dòng)技能平衡篇 課件
- 巧克力簡介課件
- 初中語文人教七年級(jí)上冊(cè)要拿我當(dāng)一挺機(jī)關(guān)槍使用
- 北京頌歌原版五線譜鋼琴譜正譜樂譜
- PSUR模板僅供參考
- 火力發(fā)電企業(yè)作業(yè)活動(dòng)風(fēng)險(xiǎn)分級(jí)管控清單(參考)
- 民法典合同編之保證合同實(shí)務(wù)解讀PPT
評(píng)論
0/150
提交評(píng)論