




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省實驗中學(xué)2020_2021學(xué)年高二數(shù)學(xué)上學(xué)期期中試題河南省實驗中學(xué)2020_2021學(xué)年高二數(shù)學(xué)上學(xué)期期中試題PAGEPAGE8河南省實驗中學(xué)2020_2021學(xué)年高二數(shù)學(xué)上學(xué)期期中試題河南省實驗中學(xué)2020—2021學(xué)年高二數(shù)學(xué)上學(xué)期期中試題考試時間:120分鐘一、單選題(每題5分,共60分)1.“"是“”的()A。充分不必要條件 B.必要不充分條件C。充要條件 D.既不充分也不必要條件2.在中,內(nèi)角,,所對的邊分別為,,.若,,則的面積為()A。3 B. C。 D。3。已知各項均為正數(shù)的等比數(shù)列,且,,成等差數(shù)列,則的值是()A.6 B。 C.9 D.4.已知的三個內(nèi)角,,所對的邊分別為,,,,且,叫這個三角形的形狀是()A.等邊三角形 B.鈍角三角形 C。直角三角形 D.等腰直角三角形5。數(shù)列滿足:,若數(shù)列是等比數(shù)列,則的值是()A.1 B。2 C。 D.-16.若關(guān)于的不等式對任意恒成立,則實數(shù)的取值范圍是()A。 B. C. D。或7.已知點在不等式組表示的平面區(qū)域內(nèi),則實數(shù)的取值范圍是()A。 B。 C。 D。8.實數(shù)對滿足不等式組,則目標(biāo)函數(shù)當(dāng)且僅當(dāng),時取最大值,則的取值范圍是()A。 B. C. D。9.已知數(shù)列滿足,,則的最小值為()A. B. C。 D。10.下列有關(guān)命題的說法正確的是()A.命題“若,則”的否命題為:“若,則”。B。若為真命題,則,均為真命題。C。命題“存在,使得”的否定是:“對任意,均有”.D。命題“若,則”的逆否命題為真命題。11.命題:函數(shù)在上是增函數(shù)。命題:直線在軸上的截距大于0。若為真命題,則實數(shù)的取值范圍是()A。 B。 C. D.12。在中,角,,的對邊分別為,,。若為銳角三角形,且滿足,則下列等式成立的是()A. B。 C。 D。二、填空題(每題5分,共20分)13。在中,邊,,所對的角分別為,,,的面積滿足,若,則外接圓的面積為_________.14。已知等比數(shù)列滿足,,且,則當(dāng)時,________。15。已知,且,則的最小值為_________。16。下列說法正確的是_________。(1)對于命題:,使得,則:,均有(2)“”是“”的充分不必要條件(3)命題“若,則"的逆否命題為:“若,則”(4)若為假命題,則,均為假命題三、解答題(17題10分,其它各題每題12分,共70分)17。設(shè):實數(shù)滿足(其中),:實數(shù)滿足.(1)若,且為真,求實數(shù)的取值范圍;(2)若是的必要不充分條件,求實數(shù)的取值范圍。18.如圖,在中,為邊上一點,且,已知,.(1)若是銳角三角形,,求角的大小;(2)若的面積為,求的長.19.數(shù)列中,,.(1)求證:數(shù)列為等比數(shù)列;(2)求數(shù)列的通項公式。20。已知命題:,.(1)若為真命題,求實數(shù)的取值范圍;(2)若有命題:,,當(dāng)為真命題且為假命題時,求實數(shù)的取值范圍.21.在銳角三角形中,角,,所對的邊分別為,,,若.(1)求角的大小;(2)若,求面積的取值范圍。22。已知數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.參考答案一、選擇題1—5:ACDAB 6—10:ACCCD 11-12:DA二、填空題13。14.15。16。(1)(2)(3)三、解答題17。(1)(2)(1)若,則:,又:,因為為真,所以真,真同時成立,所以,解得:,所以實數(shù)的取值范圍.(2):,:,因為是的必要不充分條件,所以是的必要不充分條件,所以中變量的取值集合是中變量的取值集合的真子集,所以.18。(1),(2).(1)在中,,,,由正弦定理得,解得,所以或。因為是銳角三角形,所以。又,所以。(2)由題意可得,解得,由余弦定理得,解得。則.所以的長為。19.(1)證明見解析;(2)(1)證明:根據(jù)題意,,則,∴且,故數(shù)列是首項與公比都為2的等比數(shù)列。(2)由(1)結(jié)論可知:,∴。20。(1)(2)或。(Ⅰ)∵,,∴且,解得,∴為真命題時,。(Ⅱ),,.又時,,∴.∵為真命題且為假命題時,∴真假或假真,當(dāng)假真,有,解得;當(dāng)真假,有,解得;∴為真命題且為假命題時,或。21。(1);(2)。(1)由及正弦定理得:,因為,,所以,,所以,又,所以;(2)由正弦定理,,,由得:,即①,由余弦定理得,解得,所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023-2024學(xué)年江蘇省南京市玄武區(qū)七年級(上)期末英語試題及答案
- 2025購買合同范本英文
- 2025-2030纖維蛋白原濃縮物行業(yè)市場現(xiàn)狀供需分析及重點企業(yè)投資評估規(guī)劃分析研究報告
- 2025-2030眼鏡行業(yè)市場發(fā)展現(xiàn)狀及發(fā)展前景與投資研究報告
- 2025-2030直流電動機行業(yè)市場發(fā)展分析及投資前景研究報告
- 2025-2030皮帶裝載機行業(yè)市場現(xiàn)狀供需分析及重點企業(yè)投資評估規(guī)劃分析研究報告
- 2025-2030電子商務(wù)書籍行業(yè)市場深度分析及競爭格局與投資價值研究報告
- 2025企業(yè)租賃合同范本「標(biāo)準(zhǔn)」
- 2025-2030瓦楞原紙行業(yè)產(chǎn)銷現(xiàn)狀調(diào)研及未來投資風(fēng)險預(yù)警報告
- 2025-2030物流公司行業(yè)市場發(fā)展分析及發(fā)展趨勢前景預(yù)測報告
- 房屋租賃合同 (三)
- 2025年北京電子科技職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年(2019-2024年)真題考點試卷含答案解析
- 2024年安徽寧馬投資有限責(zé)任公司招聘10人筆試參考題庫附帶答案詳解
- 《變頻器原理及應(yīng)用》課件
- 第16課《有為有不為》公開課一等獎創(chuàng)新教學(xué)設(shè)計
- 新生兒腭裂喂養(yǎng)護(hù)理
- 攝像服務(wù)行業(yè)品牌建設(shè)研究-深度研究
- 中醫(yī)養(yǎng)生保健培訓(xùn)
- 2024年職業(yè)素養(yǎng)培訓(xùn)考試題庫(附答案)
- 第20課 聯(lián)合國與世界貿(mào)易組織-(說課稿)2023-2024學(xué)年九年級下冊歷史部編版(安徽)
- 《光電對抗原理與應(yīng)用》課件第1章
評論
0/150
提交評論