版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知命題:“關(guān)于的方程有實(shí)根”,若為真命題的充分不必要條件為,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.空間點(diǎn)到平面的距離定義如下:過空間一點(diǎn)作平面的垂線,這個(gè)點(diǎn)和垂足之間的距離叫做這個(gè)點(diǎn)到這個(gè)平面的距離.已知平面,,兩兩互相垂直,點(diǎn),點(diǎn)到,的距離都是3,點(diǎn)是上的動(dòng)點(diǎn),滿足到的距離與到點(diǎn)的距離相等,則點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是()A. B.3 C. D.3.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯(cuò)誤,則下列結(jié)論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無(wú)法確定誰(shuí)被錄用了4.二項(xiàng)式的展開式中,常數(shù)項(xiàng)為()A. B.80 C. D.1605.△ABC的內(nèi)角A,B,C的對(duì)邊分別為,已知,則為()A. B. C.或 D.或6.設(shè),,,則的大小關(guān)系是()A. B. C. D.7.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件8.已知隨機(jī)變量服從正態(tài)分布,,()A. B. C. D.9.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.10.在中,為中點(diǎn),且,若,則()A. B. C. D.11.已知展開式的二項(xiàng)式系數(shù)和與展開式中常數(shù)項(xiàng)相等,則項(xiàng)系數(shù)為()A.10 B.32 C.40 D.8012.已知向量與向量平行,,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等差數(shù)列(公差不為0),其中,,成等比數(shù)列,則這個(gè)等比數(shù)列的公比為_____.14.的展開式中,的系數(shù)是__________.(用數(shù)字填寫答案)15.在中,內(nèi)角所對(duì)的邊分別是,若,,則__________.16.平行四邊形中,,為邊上一點(diǎn)(不與重合),將平行四邊形沿折起,使五點(diǎn)均在一個(gè)球面上,當(dāng)四棱錐體積最大時(shí),球的表面積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知中,,,是上一點(diǎn).(1)若,求的長(zhǎng);(2)若,,求的值.18.(12分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.19.(12分)在三角形中,角,,的對(duì)邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.20.(12分)已知函數(shù),它的導(dǎo)函數(shù)為.(1)當(dāng)時(shí),求的零點(diǎn);(2)當(dāng)時(shí),證明:.21.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列前項(xiàng)的和.22.(10分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y﹣29=0相切.(1)求圓的方程;(2)設(shè)直線ax﹣y+5=0(a>0)與圓相交于A,B兩點(diǎn),求實(shí)數(shù)a的取值范圍;(3)在(2)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線l過點(diǎn)P(﹣2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】命題p:,為,又為真命題的充分不必要條件為,故2、D【解析】
建立平面直角坐標(biāo)系,將問題轉(zhuǎn)化為點(diǎn)的軌跡上的點(diǎn)到軸的距離的最小值,利用到軸的距離等于到點(diǎn)的距離得到點(diǎn)軌跡方程,得到,進(jìn)而得到所求最小值.【詳解】如圖,原題等價(jià)于在直角坐標(biāo)系中,點(diǎn),是第一象限內(nèi)的動(dòng)點(diǎn),滿足到軸的距離等于點(diǎn)到點(diǎn)的距離,求點(diǎn)的軌跡上的點(diǎn)到軸的距離的最小值.設(shè),則,化簡(jiǎn)得:,則,解得:,即點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是.故選:.【點(diǎn)睛】本題考查立體幾何中點(diǎn)面距離最值的求解,關(guān)鍵是能夠準(zhǔn)確求得動(dòng)點(diǎn)軌跡方程,進(jìn)而根據(jù)軌跡方程構(gòu)造不等關(guān)系求得最值.3、C【解析】
假設(shè)若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯(cuò)誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯(cuò)誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯(cuò)誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點(diǎn)睛】本題考查了邏輯推理能力,屬基礎(chǔ)題.4、A【解析】
求出二項(xiàng)式的展開式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項(xiàng)式展開式的通式為,令,解得,則常數(shù)項(xiàng)為.故選:A.【點(diǎn)睛】本題考查二項(xiàng)式定理指定項(xiàng)的求解,關(guān)鍵是熟練應(yīng)用二項(xiàng)展開式的通式,是基礎(chǔ)題.5、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點(diǎn)睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.6、A【解析】
選取中間值和,利用對(duì)數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因?yàn)閷?duì)數(shù)函數(shù)在上單調(diào)遞增,所以,因?yàn)閷?duì)數(shù)函數(shù)在上單調(diào)遞減,所以,因?yàn)橹笖?shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點(diǎn)睛】本題考查利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識(shí)的綜合運(yùn)用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、??碱}型.7、B【解析】
試題分析:通過逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價(jià)性知,“若q則”為真,“若則q”為假,故選B.考點(diǎn):邏輯命題8、B【解析】
利用正態(tài)分布密度曲線的對(duì)稱性可得出,進(jìn)而可得出結(jié)果.【詳解】,所以,.故選:B.【點(diǎn)睛】本題考查利用正態(tài)分布密度曲線的對(duì)稱性求概率,屬于基礎(chǔ)題.9、A【解析】
由題意可知直線過定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡(jiǎn)并求解出離心率的取值范圍.【詳解】設(shè),且線過定點(diǎn)即為的圓心,因?yàn)?,所以,又因?yàn)椋?,所以,所以,所以,所以,所以,所?故選:A.【點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡(jiǎn)化運(yùn)算.10、B【解析】
選取向量,為基底,由向量線性運(yùn)算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,平面向量基本定理,屬于基礎(chǔ)題.11、D【解析】
根據(jù)二項(xiàng)式定理通項(xiàng)公式可得常數(shù)項(xiàng),然后二項(xiàng)式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時(shí),常數(shù)項(xiàng)為又展開式的二項(xiàng)式系數(shù)和為由所以當(dāng)時(shí),所以項(xiàng)系數(shù)為故選:D【點(diǎn)睛】本題考查二項(xiàng)式定理通項(xiàng)公式,熟悉公式,細(xì)心計(jì)算,屬基礎(chǔ)題.12、B【解析】
設(shè),根據(jù)題意得出關(guān)于、的方程組,解出這兩個(gè)未知數(shù)的值,即可得出向量的坐標(biāo).【詳解】設(shè),且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點(diǎn)睛】本題考查向量坐標(biāo)的求解,涉及共線向量的坐標(biāo)表示和向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
根據(jù)等差數(shù)列關(guān)系,用首項(xiàng)和公差表示出,解出首項(xiàng)和公差的關(guān)系,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由題意得:,則整理得,,所以故答案為:4【點(diǎn)睛】此題考查等差數(shù)列基本量的計(jì)算,涉及等比中項(xiàng),考查基本計(jì)算能力.14、【解析】
根據(jù)組合的知識(shí),結(jié)合組合數(shù)的公式,可得結(jié)果.【詳解】由題可知:項(xiàng)來(lái)源可以是:(1)取1個(gè),4個(gè)(2)取2個(gè),3個(gè)的系數(shù)為:故答案為:【點(diǎn)睛】本題主要考查組合的知識(shí),熟悉二項(xiàng)式定理展開式中每一項(xiàng)的來(lái)源,實(shí)質(zhì)上每個(gè)因式中各取一項(xiàng)的乘積,轉(zhuǎn)化為組合的知識(shí),屬中檔題.15、【解析】
先求得的值,由此求得的值,再利用正弦定理求得的值.【詳解】由于,所以,所以.由正弦定理得.故答案為:【點(diǎn)睛】本小題主要考查正弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查三角形的內(nèi)角和定理,屬于中檔題.16、【解析】
依題意可得、、、四點(diǎn)共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當(dāng)且僅當(dāng)面面時(shí)體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、、、四點(diǎn)共圓,所以因?yàn)?,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當(dāng)面面時(shí),取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【點(diǎn)睛】本題考查多面體的外接球的相關(guān)計(jì)算,正弦定理、余弦定理的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)運(yùn)用三角形面積公式求出的長(zhǎng)度,然后再運(yùn)用余弦定理求出的長(zhǎng).(2)運(yùn)用正弦定理分別表示出和,結(jié)合已知條件計(jì)算出結(jié)果.【詳解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【點(diǎn)睛】本題考查了正弦定理、三角形面積公式以及余弦定理,結(jié)合三角形熟練運(yùn)用各公式是解題關(guān)鍵,此類題目是??碱}型,能夠運(yùn)用公式進(jìn)行邊角互化,需要掌握解題方法.18、(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識(shí)證明,再由線面平行判定定理得結(jié)論;(2)先由面面垂直性質(zhì)定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內(nèi),因?yàn)锳B⊥AD,,所以.又因?yàn)槠矫鍭BC,平面ABC,所以EF∥平面ABC.(2)因?yàn)槠矫鍭BD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因?yàn)槠矫?,所?又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因?yàn)锳C平面ABC,所以AD⊥AC.點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19、(Ⅰ)(Ⅱ)8【解析】
(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根據(jù)同角的三角函數(shù)的關(guān)系和兩角和的正弦公式和正弦定理即可求出.【詳解】(Ⅰ)由余弦定理,所以,所以,即,因?yàn)椋?;(Ⅱ)因?yàn)椋?,因?yàn)椋?,由正弦定理得,所?【點(diǎn)睛】本題考查利用正弦定理與余弦定理解三角形,屬于簡(jiǎn)單題.20、(1)見解析;(2)證明見解析.【解析】
當(dāng)時(shí),求函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的單調(diào)性,計(jì)算即為導(dǎo)函數(shù)的零點(diǎn);
當(dāng)時(shí),分類討論x的范圍,可令新函數(shù),計(jì)算新函數(shù)的最值可證明.【詳解】(1)的定義域?yàn)楫?dāng)時(shí),,,易知為上的增函數(shù),又,所以是的唯一零點(diǎn);(2)證明:當(dāng)時(shí),,①若,則,所以成立,②若,設(shè),則,令,則,因?yàn)?,所以,從而在上單調(diào)遞增,所以,即,在上單調(diào)遞增;所以,即,故.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,單調(diào)性,零點(diǎn)的求法.注意分類討論和構(gòu)造新函數(shù)求函數(shù)的最值的應(yīng)用.21、(1)(2)【解析】
(1)由基本量法,求出公比后可得通項(xiàng)公式;(2)求出,用裂項(xiàng)相消法求和.【詳解】解:(1)設(shè)等比數(shù)列的公比為又因?yàn)?,所以解得(舍)或所以,即?)據(jù)(1)求解知,,所以所以【點(diǎn)睛】本題考查求等比數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求和.解題方法是基本量法.基本量法是解決等差數(shù)列和等比數(shù)列的基本方法,務(wù)必掌握.22、(2)(x﹣2)2+y2=2.(2)().(3)存在,【解析】
(2)設(shè)圓心為M(m,0),根據(jù)相切得到,計(jì)算得到答案.(2)把直線ax﹣y+5=0,代入圓的方程,計(jì)算△=4(5a﹣2)2﹣4(a2+2)>0得到答案.(3)l的方程為,即x+ay+2﹣4a=0,過點(diǎn)M(2,0),計(jì)算得到答案.【詳解】(2)設(shè)圓心為M(m,0)(m∈Z).由于圓與直線4x+3y﹣29=0相切,且半徑為5,所以,即|4m﹣29|=2.因?yàn)閙為整數(shù),故m=2.故所求圓的方程為(x﹣2)2+y2=2.(2)把直線ax﹣y+
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版數(shù)據(jù)中心機(jī)房建設(shè)與維護(hù)合同
- 2025年度龍樓中心小學(xué)學(xué)生研學(xué)旅行活動(dòng)組織合同4篇
- 2025年度高端醫(yī)療設(shè)備采購(gòu)定金協(xié)議書4篇
- 2025年度螺旋鋼管市場(chǎng)分析與預(yù)測(cè)服務(wù)合同4篇
- 二零二五年技術(shù)咨詢合同中的技術(shù)成果交付與驗(yàn)收2篇
- 2025年度二手汽車買賣合同示范范本3篇
- 二零二五年度離婚后社交網(wǎng)絡(luò)賬號(hào)處置協(xié)議3篇
- 二零二五年茶樓品牌代理權(quán)轉(zhuǎn)讓與聯(lián)合經(jīng)營(yíng)合同3篇
- 2025年度馬戲團(tuán)道具制作與維護(hù)保養(yǎng)合同4篇
- 二零二五版農(nóng)機(jī)抵押典當(dāng)合同規(guī)范樣本3篇
- 2025年工程合作協(xié)議書
- 2025年山東省東營(yíng)市東營(yíng)區(qū)融媒體中心招聘全媒體采編播專業(yè)技術(shù)人員10人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年宜賓人才限公司招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- KAT1-2023井下探放水技術(shù)規(guī)范
- 駕駛證學(xué)法減分(學(xué)法免分)題庫(kù)及答案200題完整版
- 竣工驗(yàn)收程序流程圖
- 清華經(jīng)管工商管理碩士研究生培養(yǎng)計(jì)劃
- 口腔科診斷證明書模板
- 管溝挖槽土方計(jì)算公式
- 國(guó)網(wǎng)浙江省電力公司住宅工程配電設(shè)計(jì)技術(shù)規(guī)定
- 煙花爆竹零售應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論