




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
TikhonovregularizationFromWikipedia,thefreeencyclopediaTikhonovregularizationisthemostcommonlyusedmethodofofnamedfor.In,themethodisalsoknownasridgeregression.Itisrelatedtothe forproblems.ThestandardapproachtosolveanofgivenasAx=b,isknownasandseekstominimizetheAx一b2where?isthe.However,thematrixmaybeoryieldinganon-uniquesolution.Inordertogivepreferencetoaparticularsolutionwithdesirableproperties,theregularizationtermisincludedinthisminimization:Ax一b2+lirxll2forsomesuitablychosenTikhonovmatrix,r.Inmanycases,thismatrixischosenasther=,,givingpreferencetosolutionswithsmallernorms.Inothercases,operators.,aoraweighted)maybeusedtoenforcesmoothnessiftheunderlyingvectorisbelievedtobemostlycontinuous.Thisregularizationimprovestheconditioningoftheproblem,thusenablinganumericalsolution.Anexplicitsolution,denotedby」,isgivenby:ATbATbTheeffectofregularizationmaybevariedviathescaleofmatrix r.ForraI,whena=Othisreducestotheunregularizedleastsquaressolutionprovidedthat(ATA)-1exists.ContentsBayesianinterpretationAlthoughatfirstthechoiceofthesolutiontothisregularizedproblemmaylookartificial,andindeedthematrixrseemsratherarbitrary,theprocesscanbejustifiedfroma.Notethatforanill-posedproblemonemustnecessarilyintroducesomeadditionalassumptionsinordertogetastablesolution.Statisticallywemightassumethatweknowthatxisarandomvariablewitha.Forsimplicitywetakethemeantobezeroandassumethateachcomponentisindependentwith^x.Ourdataisalsosubjecttoerrors,andwetaketheerrorsinbtobealso withzeromeanandstandarddeviation °”UndertheseassumptionstheTikhonov-regularizedsolutionisthesolutiongiventhedataandtheaprioridistributionof^,accordingto.TheTikhonovmatrixisthen r=a/forTikhonovfactora=°匕/°xIftheassumptionofisreplacedbyassumptionsofanduncorrelatednessof,andstillassumezeromean,thentheentailsthatthesolutionisminimal.GeneralizedTikhonovregularizationForgeneralmultivariatenormaldistributionsforxandthedataerror,onecanapplyatransformationofthevariablestoreducetothecaseabove.Equivalently,onecanseekanxtominimize
Ax-b2+x-xp02Qwherewehaveused||x112tostandfortheweightednormPBayesianinterpretationPistheinverse ofb,x0isthexTPx(cf.the).Intheofx,andQistheinversecovariancematrixofxxTPx(cf.the).Intheofx,andQistheThisgeneralizedproblemcanbesolvedexplicitlyusingtheformula0-Ax)00[]RegularizationinHilbertspaceTypicallydiscretelinearill-conditionedproblemsresultasdiscretizationof,andonecanformulateTikhonovregularizationintheoriginalinfinitedimensionalcontext.IntheabovewecaninterpretAasaon,andxandbaselementsithedomainandrangeof^.TheoperatorA*A+rtristhena boundedinvertibleoperator.RelationtosingularvaluedecompositionandWienerfilterWithr=a',thisleastsquaressolutioncanb(the.GiventhesingularvaluedecompositionofAA=UYVtwithsingularvalues°”theTikhonovregularizedsolutioncanbeexpressedas
x=VDUTbwhereDhasdiagonalvaluesDiib= ib2+a2iandiszeroelsewhere.ThisdemonstratestheeffectoftheTikhonovparameterontheoftheregularizedproblem.Forthegeneralizedcaseasimilarrepresentationcanbederivedusinga.Finally,itisrelatedtothe:uTbi=1ii=1biib2wheretheWienerweightsaref=iandQisthe ofA.ib2+a2iDeterminationoftheTikhonovfactorTheoptimalregularizationparameteraisusuallyunknownandofteninpracticalproblemsisdeterminedbyanadhocmethod.ApossibleapproachreliesontheBayesianinterpretationdescribedabove.Otherapproachesincludethe,,,vedthattheoptimalparameter,inthesenseofminimizes:RSSG= RSSG= T2XGtX+;21)1XTwhereRSSisthe andTistheeffectivenumber.UsingthepreviousSVDdecomposition,wecansimplifytheaboveexpression:
andRSS=F另Cb12+andRSS=F另Cb12+工RSS二RSS0a2Cb)G2+a2iii=1iCb)Eg2… ig2+a2i=1 iEa2± g2+a2i=1 iRelationtoprobabilisticformulationTheprobabilisticformulationofanintroduces(whenalluncertaintiesareGaussian)acovariancematrixCMrepresentingtheaprioriuncertaintiesonthemodelparameters,andacovariancematrixCDrepresentingtheuncertaintieson':-:':-:''[.Jandwhenthesetwomatricesarediagonalandisotropic,equationsabove,withHistoryTikhonovregularizationhasbeeninventedindependentlyinmanydifferentcontexts.ItbecamewidelyknownfromitsapplicationtointegralequationsfromtheworkofandD.L.Phillips.SomeauthorsusethetermTikhonov-Phillipsregularization.ThefinitedimensionalcasewasexpoundedbyA.E.Hoerl,whotookastatisticalapproach,andbyM.Foster,whointerpretedthismethodasa-filter.FollowingHoerl,itisknowninthestatisticalliteratureasridgeregression.[]References(1943)."O6ycTO訪TUBOCTuo6paTHbix3agaq[Onthestabilityofinverseproblems]".39(5):195-198.Tychonoff,A.N.(1963)."OpemeHuuHeKoppeKTHonocTaB“eHHbix3agaquMeTogeperyn刃pu3aquu[Solutionofincorrectlyformulatedproblemsandtheregularizationmethod]".DokladyAkademiiNaukSSSR151:501-504..TranslatedinSovietMathematics4:1035-1038.Tychonoff,A.N.;V.Y.Arsenin(1977).SolutionofIll-posedProblems.Washington:Winston&Sons..Hansen,.,1998,Rank-deficientandDiscreteill-posedproblems,SIAMHoerlAE,1962,Applicationofridgeanalysistoregressionproblems,ChemicalEngineeringProgress,58,54-59.FosterM,1961,AnapplicationoftheWiener-Kolmogorovsmoothingtheorytomatrixinversion,J.SIAM,9,387-392PhillipsDL,1962,At
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年商洛柞水縣直空編單位選調(diào)工作人員真題
- 山東2025年03月濟(jì)南市“泉優(yōu)”引進(jìn)87名急需緊缺專業(yè)人才筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 內(nèi)蒙古2025年03月內(nèi)蒙古通遼市直企事業(yè)單位第一批次引進(jìn)108名人才筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025年04月貴州銅仁市水務(wù)局所屬事業(yè)單位公開引進(jìn)專業(yè)技術(shù)人才筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025福州地鐵站務(wù)員筆試
- 2025年04月江蘇省地震局公開招聘事業(yè)單位人員4人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 人力中介傭金合同標(biāo)準(zhǔn)文本
- 冷庫承包合同樣本
- 2025年全國青少年禁毒知識競賽題庫附答案(共270題)
- 2025年全國導(dǎo)游文化基礎(chǔ)知識簡答題庫100題及答案
- 2025陜西核工業(yè)工程勘察院有限公司招聘(21人)筆試參考題庫附帶答案詳解
- 2025年山東、湖北部分重點中學(xué)高中畢業(yè)班第二次模擬考試數(shù)學(xué)試題含解析
- 8.2 誠信經(jīng)營 依法納稅課件-高中政治統(tǒng)編版選擇性必修二法律與生活
- 2025年超高功率大噸位電弧爐項目發(fā)展計劃
- DB32T 5076-2025 奶牛規(guī)?;B(yǎng)殖設(shè)施設(shè)備配置技術(shù)規(guī)范
- 2024年四川省高等職業(yè)教育單獨考試招生文化素質(zhì)考試中職英語試卷
- 人教A版必修第二冊高一(下)數(shù)學(xué)6.3.2-6.3.3平面向量正交分解及坐標(biāo)表示【課件】
- 高速公路修補(bǔ)合同協(xié)議
- 航空業(yè)勞動力安全保障措施
- 《OCR技術(shù)及其應(yīng)用》課件
- 2025年內(nèi)科主治醫(yī)師考試消化內(nèi)科
評論
0/150
提交評論