Tikhonov吉洪諾夫正則化_第1頁
Tikhonov吉洪諾夫正則化_第2頁
Tikhonov吉洪諾夫正則化_第3頁
Tikhonov吉洪諾夫正則化_第4頁
Tikhonov吉洪諾夫正則化_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

TikhonovregularizationFromWikipedia,thefreeencyclopediaTikhonovregularizationisthemostcommonlyusedmethodofofnamedfor.In,themethodisalsoknownasridgeregression.Itisrelatedtothe forproblems.ThestandardapproachtosolveanofgivenasAx=b,isknownasandseekstominimizetheAx一b2where?isthe.However,thematrixmaybeoryieldinganon-uniquesolution.Inordertogivepreferencetoaparticularsolutionwithdesirableproperties,theregularizationtermisincludedinthisminimization:Ax一b2+lirxll2forsomesuitablychosenTikhonovmatrix,r.Inmanycases,thismatrixischosenasther=,,givingpreferencetosolutionswithsmallernorms.Inothercases,operators.,aoraweighted)maybeusedtoenforcesmoothnessiftheunderlyingvectorisbelievedtobemostlycontinuous.Thisregularizationimprovestheconditioningoftheproblem,thusenablinganumericalsolution.Anexplicitsolution,denotedby」,isgivenby:ATbATbTheeffectofregularizationmaybevariedviathescaleofmatrix r.ForraI,whena=Othisreducestotheunregularizedleastsquaressolutionprovidedthat(ATA)-1exists.ContentsBayesianinterpretationAlthoughatfirstthechoiceofthesolutiontothisregularizedproblemmaylookartificial,andindeedthematrixrseemsratherarbitrary,theprocesscanbejustifiedfroma.Notethatforanill-posedproblemonemustnecessarilyintroducesomeadditionalassumptionsinordertogetastablesolution.Statisticallywemightassumethatweknowthatxisarandomvariablewitha.Forsimplicitywetakethemeantobezeroandassumethateachcomponentisindependentwith^x.Ourdataisalsosubjecttoerrors,andwetaketheerrorsinbtobealso withzeromeanandstandarddeviation °”UndertheseassumptionstheTikhonov-regularizedsolutionisthesolutiongiventhedataandtheaprioridistributionof^,accordingto.TheTikhonovmatrixisthen r=a/forTikhonovfactora=°匕/°xIftheassumptionofisreplacedbyassumptionsofanduncorrelatednessof,andstillassumezeromean,thentheentailsthatthesolutionisminimal.GeneralizedTikhonovregularizationForgeneralmultivariatenormaldistributionsforxandthedataerror,onecanapplyatransformationofthevariablestoreducetothecaseabove.Equivalently,onecanseekanxtominimize

Ax-b2+x-xp02Qwherewehaveused||x112tostandfortheweightednormPBayesianinterpretationPistheinverse ofb,x0isthexTPx(cf.the).Intheofx,andQistheinversecovariancematrixofxxTPx(cf.the).Intheofx,andQistheThisgeneralizedproblemcanbesolvedexplicitlyusingtheformula0-Ax)00[]RegularizationinHilbertspaceTypicallydiscretelinearill-conditionedproblemsresultasdiscretizationof,andonecanformulateTikhonovregularizationintheoriginalinfinitedimensionalcontext.IntheabovewecaninterpretAasaon,andxandbaselementsithedomainandrangeof^.TheoperatorA*A+rtristhena boundedinvertibleoperator.RelationtosingularvaluedecompositionandWienerfilterWithr=a',thisleastsquaressolutioncanb(the.GiventhesingularvaluedecompositionofAA=UYVtwithsingularvalues°”theTikhonovregularizedsolutioncanbeexpressedas

x=VDUTbwhereDhasdiagonalvaluesDiib= ib2+a2iandiszeroelsewhere.ThisdemonstratestheeffectoftheTikhonovparameterontheoftheregularizedproblem.Forthegeneralizedcaseasimilarrepresentationcanbederivedusinga.Finally,itisrelatedtothe:uTbi=1ii=1biib2wheretheWienerweightsaref=iandQisthe ofA.ib2+a2iDeterminationoftheTikhonovfactorTheoptimalregularizationparameteraisusuallyunknownandofteninpracticalproblemsisdeterminedbyanadhocmethod.ApossibleapproachreliesontheBayesianinterpretationdescribedabove.Otherapproachesincludethe,,,vedthattheoptimalparameter,inthesenseofminimizes:RSSG= RSSG= T2XGtX+;21)1XTwhereRSSisthe andTistheeffectivenumber.UsingthepreviousSVDdecomposition,wecansimplifytheaboveexpression:

andRSS=F另Cb12+andRSS=F另Cb12+工RSS二RSS0a2Cb)G2+a2iii=1iCb)Eg2… ig2+a2i=1 iEa2± g2+a2i=1 iRelationtoprobabilisticformulationTheprobabilisticformulationofanintroduces(whenalluncertaintiesareGaussian)acovariancematrixCMrepresentingtheaprioriuncertaintiesonthemodelparameters,andacovariancematrixCDrepresentingtheuncertaintieson':-:':-:''[.Jandwhenthesetwomatricesarediagonalandisotropic,equationsabove,withHistoryTikhonovregularizationhasbeeninventedindependentlyinmanydifferentcontexts.ItbecamewidelyknownfromitsapplicationtointegralequationsfromtheworkofandD.L.Phillips.SomeauthorsusethetermTikhonov-Phillipsregularization.ThefinitedimensionalcasewasexpoundedbyA.E.Hoerl,whotookastatisticalapproach,andbyM.Foster,whointerpretedthismethodasa-filter.FollowingHoerl,itisknowninthestatisticalliteratureasridgeregression.[]References(1943)."O6ycTO訪TUBOCTuo6paTHbix3agaq[Onthestabilityofinverseproblems]".39(5):195-198.Tychonoff,A.N.(1963)."OpemeHuuHeKoppeKTHonocTaB“eHHbix3agaquMeTogeperyn刃pu3aquu[Solutionofincorrectlyformulatedproblemsandtheregularizationmethod]".DokladyAkademiiNaukSSSR151:501-504..TranslatedinSovietMathematics4:1035-1038.Tychonoff,A.N.;V.Y.Arsenin(1977).SolutionofIll-posedProblems.Washington:Winston&Sons..Hansen,.,1998,Rank-deficientandDiscreteill-posedproblems,SIAMHoerlAE,1962,Applicationofridgeanalysistoregressionproblems,ChemicalEngineeringProgress,58,54-59.FosterM,1961,AnapplicationoftheWiener-Kolmogorovsmoothingtheorytomatrixinversion,J.SIAM,9,387-392PhillipsDL,1962,At

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論