版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線上任意一點處的切線斜率的最小值為()A.3 B.2 C. D.12.函數(shù)的定義域為()A. B. C. D.3.下列不等式正確的是()A. B.C. D.4.已知復(fù)數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限5.不等式組表示的平面區(qū)域為,則()A., B.,C., D.,6.記等差數(shù)列的公差為,前項和為.若,,則()A. B. C. D.7.拋物線的準(zhǔn)線方程是,則實數(shù)()A. B. C. D.8.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.9.下列四個圖象可能是函數(shù)圖象的是()A. B. C. D.10.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.11.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或12.已知,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的對稱軸與準(zhǔn)線的交點為,直線與交于,兩點,若,則實數(shù)__________.14.執(zhí)行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.15.一個袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個,從中任意摸取3個小球,每個小球被取出的可能性相等,則取出的3個小球中數(shù)字最大的為4的概率是__.16.已知點為雙曲線的右焦點,兩點在雙曲線上,且關(guān)于原點對稱,若,設(shè),且,則該雙曲線的焦距的取值范圍是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優(yōu)弧(圓上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當(dāng)為何值時,棧道總長度最短.18.(12分)如圖所示,在四棱錐中,平面,底面ABCD滿足AD∥BC,,,E為AD的中點,AC與BE的交點為O.(1)設(shè)H是線段BE上的動點,證明:三棱錐的體積是定值;(2)求四棱錐的體積;(3)求直線BC與平面PBD所成角的余弦值.19.(12分)已知動圓經(jīng)過點,且動圓被軸截得的弦長為,記圓心的軌跡為曲線.(1)求曲線的標(biāo)準(zhǔn)方程;(2)設(shè)點的橫坐標(biāo)為,,為圓與曲線的公共點,若直線的斜率,且,求的值.20.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.21.(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在區(qū)間內(nèi)無解,求實數(shù)的取值范圍.22.(10分)已知數(shù)列滿足:對一切成立.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍柍闪?,所以上任意一點處的切線斜率的最小值為3.故選:A.【點睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運用基本不等式求最值,考查計算能力.2.C【解析】
函數(shù)的定義域應(yīng)滿足故選C.3.D【解析】
根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項,又由,所以.故選D.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4.C【解析】分析:根據(jù)復(fù)數(shù)的運算,求得復(fù)數(shù)z,再利用復(fù)數(shù)的表示,即可得到復(fù)數(shù)對應(yīng)的點,得到答案.詳解:由題意,復(fù)數(shù)z=2i1-i所以復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為(-1,-1),位于復(fù)平面內(nèi)的第三象限,故選C.點睛:本題主要考查了復(fù)數(shù)的四則運算及復(fù)數(shù)的表示,其中根據(jù)復(fù)數(shù)的四則運算求解復(fù)數(shù)z是解答的關(guān)鍵,著重考查了推理與運算能力.5.D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當(dāng)過點時,直線在軸上的截距最大,即,當(dāng)過點原點時,直線在軸上的截距最小,即,故AB錯誤;
設(shè),則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對目標(biāo)函數(shù)幾何意義的認(rèn)識,屬于基礎(chǔ)題.6.C【解析】
由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點睛】本題考查等差數(shù)列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.7.C【解析】
根據(jù)準(zhǔn)線的方程寫出拋物線的標(biāo)準(zhǔn)方程,再對照系數(shù)求解即可.【詳解】因為準(zhǔn)線方程為,所以拋物線方程為,所以,即.故選:C【點睛】本題考查拋物線與準(zhǔn)線的方程.屬于基礎(chǔ)題.8.C【解析】
如圖所示,當(dāng)點C位于垂直于面的直徑端點時,三棱錐的體積最大,設(shè)球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.9.C【解析】
首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數(shù),即可得到函數(shù)圖象關(guān)于對稱,即可排除A、D,再根據(jù)時函數(shù)值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數(shù),圖象關(guān)于原點對稱,∴的圖象關(guān)于點成中心對稱.可排除A、D項.當(dāng)時,,∴B項不正確.故選:C【點睛】本題考查函數(shù)的性質(zhì)與識圖能力,一般根據(jù)四個選擇項來判斷對應(yīng)的函數(shù)性質(zhì),即可排除三個不符的選項,屬于中檔題.10.B【解析】
根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測畫法”可得,,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應(yīng)用及組合體的表面積求法,難度較易.11.C【解析】
先根據(jù)弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設(shè)直線的傾斜角為,則,所以,,即,所以直線的方程為.當(dāng)直線的方程為,聯(lián)立,解得和,所以;同理,當(dāng)直線的方程為.,綜上,或.選C.【點睛】本題主要考查直線和拋物線的位置關(guān)系,弦長問題一般是利用弦長公式來處理.出現(xiàn)了到焦點的距離時,一般考慮拋物線的定義.12.B【解析】
利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡求解即可.【詳解】,本題正確選項:【點睛】本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由于直線過拋物線的焦點,因此過,分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義及平行線性質(zhì)可得,從而再由拋物線定義可求得直線傾斜角的余弦,再求得正切即為直線斜率.注意對稱性,問題應(yīng)該有兩解.【詳解】直線過拋物線的焦點,,過,分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義知,.因為,所以.因為,所以,從而.設(shè)直線的傾斜角為,不妨設(shè),如圖,則,,同理,則,解得,,由對稱性還有滿足題意.,綜上,.【點睛】本題考查拋物線的性質(zhì),考查拋物線的焦點弦問題,掌握拋物線的定義,把拋物線上點到焦點距離與它到距離聯(lián)系起來是解題關(guān)鍵.14.8【解析】
根據(jù)偽代碼逆向運算求得結(jié)果.【詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結(jié)果:【點睛】本題考查算法中的語言,屬于基礎(chǔ)題.15.【解析】
由題,得滿足題目要求的情況有,①有一個數(shù)字4,另外兩個數(shù)字從1,2,3里面選和②有兩個數(shù)字4,另外一個數(shù)字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:①有一個數(shù)字4,另外兩個數(shù)字從1,2,3里面選,一共有種情況;②有兩個數(shù)字4,另外一個數(shù)字從1,2,3里面選,一共有種情況,又從中任意摸取3個小球,有種情況,所以取出的3個小球中數(shù)字最大的為4的概率.故答案為:【點睛】本題主要考查古典概型與組合的綜合問題,考查學(xué)生分析問題和解決問題的能力.16.【解析】
設(shè)雙曲線的左焦點為,連接,由于.所以四邊形為矩形,故,由雙曲線定義可得,再求的值域即可.【詳解】如圖,設(shè)雙曲線的左焦點為,連接,由于.所以四邊形為矩形,故.在中,由雙曲線的定義可得,.故答案為:【點睛】本題考查雙曲線定義及其性質(zhì),涉及到求余弦型函數(shù)的值域,考查學(xué)生的運算能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.,;當(dāng)時,棧道總長度最短.【解析】
連,,由切線長定理知:,,,,即,,則,,進而確定的取值范圍;根據(jù)求導(dǎo)得,利用增減性算出,進而求得取值.【詳解】解:連,,由切線長定理知:,,,又,,故,則劣弧的長為,因此,優(yōu)弧的長為,又,故,,即,,所以,,,則;,,其中,,-0+單調(diào)遞減極小值單調(diào)遞增故時,所以當(dāng)時,棧道總長度最短.【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)當(dāng)中的應(yīng)用,屬于中檔題.18.(1)證明見解析(2)(3)【解析】
(1)因為底面ABCD為梯形,且,所以四邊形BCDE為平行四邊形,則BE∥CD,又平面,平面,所以平面,又因為H為線段BE上的動點,的面積是定值,從而三棱錐的體積是定值.(2)因為平面,所以,結(jié)合BE∥CD,所以,又因為,,且E為AD的中點,所以四邊形ABCE為正方形,所以,結(jié)合,則平面,連接,則,因為平面,所以,因為,所以是等腰直角三角形,O為斜邊AC上的中點,所以,且,所以平面,所以PO是四棱錐的高,又因為梯形ABCD的面積為,在中,,所以.(3)以O(shè)為坐標(biāo)原點,建立空間直角坐標(biāo)系,如圖所示,則B(,0,0),C(0,,0),D(,,0),P(0,0,),則,設(shè)平面PBD的法向量為,則即則,令,得到,設(shè)BC與平面PBD所成的角為,則,所以,所以直線BC與平面PBD所成角的余弦值為.19.見解析【解析】
(1)設(shè),則點到軸的距離為,因為圓被軸截得的弦長為,所以,又,所以,化簡可得,所以曲線的標(biāo)準(zhǔn)方程為.(2)設(shè),,因為直線的斜率,所以可設(shè)直線的方程為,由及,消去可得,所以,,所以.設(shè)線段的中點為,點的縱坐標(biāo)為,則,,所以直線的斜率為,所以,所以,所以.易得圓心到直線的距離,由圓經(jīng)過點,可得,所以,整理可得,解得或,所以或,又,所以.20.(1);(2)【解析】
(1)由已知條件和正弦定理進行邊角互化得,再根據(jù)余弦定理可求得值.(2)由正弦定理得,,代入得,運用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設(shè)外接圓的半徑為,則由正弦定理得,,,.【點睛】本題考查運用三角形的正弦定理、余弦定理、三角形的面積公式,關(guān)鍵在于熟練地運用其公式,合理地選擇進行邊角互化,屬于基礎(chǔ)題.21.(1);(2).【解析】
(1)只需分,,三種情況討論即可;(2)在區(qū)間上恒成立,轉(zhuǎn)化為,只需求出即可.【詳解】(1)當(dāng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 14《天文學(xué)上的曠世之爭》說課稿 2023-2024學(xué)年統(tǒng)編版高中語文選擇性必修下冊
- 2025年度智能云計算平臺運維服務(wù)合同2篇
- 2025年度新能源出租車司機勞動合同規(guī)范范本2篇
- 福建省南平市太平中學(xué)高一化學(xué)模擬試題含解析
- 福建省南平市松溪縣第二中學(xué)高一地理模擬試題含解析
- 2024年版:廣告發(fā)布合同廣告內(nèi)容審核與責(zé)任分配
- 2024版二手房租賃買賣合同范本
- 農(nóng)場年度榮耀
- 2025版智能家居配套大平方樓房買賣合同3篇
- 大V賬號推廣合同(2篇)
- 2024-2025學(xué)年廣東省廣州市廣州大附中初三3月教學(xué)質(zhì)量監(jiān)測考試數(shù)學(xué)試題(理甲卷)版含解析
- 科研倫理與學(xué)術(shù)規(guī)范期末考試試題
- 2024年秋季人教版新教材七年級上冊語文全冊教案(名師教學(xué)設(shè)計簡案)
- 2024中華人民共和國農(nóng)村集體經(jīng)濟組織法詳細(xì)解讀課件
- 2025屆湖南省長沙市青竹湖湘一外國語學(xué)校七年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析
- 2024中國食藥同源大健康產(chǎn)業(yè)消費洞察與產(chǎn)業(yè)發(fā)展分析白皮書
- 郵政銀行借款合同
- 2024屆廣州市番禺區(qū)重點名校中考數(shù)學(xué)全真模擬試題含解析
- 2024春期國開電大??啤吨袊糯幕WR》在線形考(形考任務(wù)一至四)試題及答案
- 出現(xiàn)產(chǎn)品質(zhì)量問題退換貨承諾
- GB/T 17937-2024電工用鋁包鋼線
評論
0/150
提交評論