版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
第八章假設檢驗第一節(jié)概述第二節(jié)單個正態(tài)總體的假設檢驗第三節(jié)兩個正態(tài)總體的假設檢驗本章主要內(nèi)容第四節(jié)總體分布函數(shù)的假設檢驗第一節(jié)概述例:某工廠用包裝機包裝奶粉,額定標準為每袋凈重0.5kg.設包裝機稱得奶粉重量X
服從正態(tài)分布。根據(jù)長期的經(jīng)驗知其標準差σ=0.015(kg),為檢驗某臺包裝機的工作是否正常,隨機抽取包裝的奶粉9袋,稱得凈重(單位:kg)為
0.499,0.515,0.508,0.512,0.4980.515,0.516,0.513,0.524問該包裝機的工作是否正常?于是提出假設:這樣的假設叫做統(tǒng)計假設.1、統(tǒng)計假設關(guān)于總體X的分布(或隨機事件之概率)的各種論斷叫統(tǒng)計假設(statisticalhypothesis),簡稱假設,用H表示.其中需要保護、不能輕易否定的假設稱為原假設或零假設(nullhypothesis),記為H0。當零假設不成立時必定選擇的假設稱為備擇假設(alternativehypothesis),記為H1。例如:1.對于檢驗某個總體X的分布,可以提出假設:2.對于總體X的分布的參數(shù),可以提出假設:
統(tǒng)計假設提出之后我們關(guān)心的是它的真?zhèn)?根據(jù)來自總體的樣本,按照一定的規(guī)則對H0作出判斷,是接受還是拒絕.這個用來對假設作出判斷的規(guī)則叫做檢驗準則,簡稱檢驗.如果一個統(tǒng)計假設完全確定總體的分布,則稱此假設為簡單假設(simplehypothesis);否則就稱之為復合假設(complexhypothesis)。建立統(tǒng)計假設并依據(jù)樣本,采用相應的統(tǒng)計方法,經(jīng)過一定的程序,對零假設和備擇假設作出取舍的過程就稱為假設檢驗(hypothesistesting)。在已知總體分布形式情況下,對總體分布中的未知參數(shù)作統(tǒng)計假設,這種僅涉及到總體分布之未知參數(shù)的統(tǒng)計假設稱為參數(shù)假設(parameterhypothesis)。而對總體分布形式未知,是關(guān)于總體分布形式作統(tǒng)計假設,這種直接對總體分布形式所做的統(tǒng)計假設稱為非參數(shù)假設(non-parameterhypothesis)。2、假設檢驗的基本思想3、兩類錯誤(2)原假設H0實際是不正確的,但是卻被錯誤的接受了,這樣就犯了“取偽”的錯誤,通常稱為第二類錯誤(typeⅡerror),其發(fā)生的概率P{接受H0∣H0不真}=
。(1)原假設H0實際是正確的,但是卻被錯誤地拒絕了,就犯了“棄真”的錯誤,通常稱為第一類錯誤(typeⅠerror)。由于僅當小概率事件A發(fā)生時才拒絕H0,所以犯第一類錯誤的概率就是條件概率P{拒絕H0∣H0為真}=
。第二節(jié) 單個正態(tài)總體的假設檢驗設總體
,抽取容量為n的樣本X1,X2,…,Xn,樣本均值與樣本方差分別是在一定條件下檢驗關(guān)于未知參數(shù)或的某些假設1.單個正態(tài)總體數(shù)學期望的假設檢驗(1)已知關(guān)于的
檢驗(
檢驗法)設總體
,當
已知時,檢驗假設由選取為假設檢驗的統(tǒng)計量.例8.2根據(jù)長期經(jīng)驗和資料的分析,某磚廠成產(chǎn)的磚的“抗斷強度”X服從正態(tài)分布,方差為1.21。從該廠產(chǎn)品中隨機抽取6塊,測得抗斷強度(單位:kg.cm-2)如下:32.5629.6631.6430.0031.8731.03檢驗這批磚的平均抗斷強度為32.50是否成立(取a=0.05,并假設磚的抗斷強度的方差不會有變化?)解:作為檢驗統(tǒng)計量。(2)未知時,關(guān)于
的檢驗(t檢驗法)當H0為真時,首先來求檢驗問題H0:;H1:的拒絕域(顯著性水平為
)。由于
未知,不能再利用Z作為檢驗統(tǒng)計量了。注意到S2是的無偏估計,用S2來代替,即采用所以關(guān)于H0的拒絕域為
??傻藐P(guān)于
的各種不同的假設檢驗問題的拒絕域。這種用t統(tǒng)計量作為檢驗統(tǒng)計量的檢驗法稱為t檢驗法。例1:設某次考試考生成績服從正態(tài)分布,從中隨機抽出36位考生的成績,算得平均成績?yōu)?6.5分,標準差為15分,問是否可以認為這次考試全體考生的平均成績?yōu)?0分?(取顯著性水平
=0.05)?(3)雙邊檢驗與單邊檢驗用統(tǒng)計量u的值來做檢驗,稱這種統(tǒng)計量為檢驗統(tǒng)計量。當檢驗統(tǒng)計量的觀測值的絕對值不小于臨界值
,即z的觀測值落在區(qū)間或內(nèi)時,拒絕原假設H0,通常稱這樣的區(qū)間為關(guān)于原假設H0的拒絕域(簡稱拒絕域)。當檢驗統(tǒng)計量的觀測值的絕對值小于臨界值
,即z
的觀測值落在
內(nèi)時,我們接受原假設H0,稱這樣的區(qū)間為關(guān)于原假設H0的接受域(簡稱接受域)。H0為=0,而備擇假設H1表明可能大于
0,也可能小于
0,稱之為雙邊備擇假設。備擇假設為雙邊備擇假設的檢驗問題稱為雙邊假設檢驗(two-sidedtest)問題。右邊檢驗與左邊檢驗統(tǒng)稱為單邊檢驗.現(xiàn)討論單邊檢驗的拒絕域:設總體
,當
已知時,檢驗假設右邊檢測的拒絕域.例8.4從甲地發(fā)送一個信號到乙地,設發(fā)送的信號值為,由于信號傳送時有噪聲疊加到信號上,這個噪聲是隨機的,它服從正態(tài)分布N(,22)的隨機變量.設甲地發(fā)送某信號5次,乙地收到的信號值為
8.410.59.19.69.9由以往經(jīng)驗,信號值為8,于是乙方猜測甲地發(fā)送的信號值為8,能否接受這種猜測?取α=0.05這是右邊檢驗問題.(1)雙邊檢驗2、單個正態(tài)總體方差的假設檢驗(
檢驗法)設總體
,未知時,檢驗假設(2)單邊檢驗(右檢驗或左檢驗)設總體
,未知時,檢驗假設零件直徑xi9.29.49.69.810.010.210.410.610.8頻數(shù)ni113675421解:要檢驗的假設是因為未知,所以選取統(tǒng)計量第三節(jié) 兩個正態(tài)總體的假設檢驗設總體
,總體
,從兩個總體中分別獨立抽取樣本X1,X2,…,Xn1
及Y1,Y2,…,Yn2,樣本均值與樣本方差分別是及來檢驗關(guān)于參數(shù)
的某些假設。1、兩正態(tài)總體數(shù)學期望假設檢驗(1)方差已知關(guān)于數(shù)學期望的假設檢驗(Z檢驗法)考慮檢驗問題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 眉山藥科職業(yè)學院《軟件工程與》2023-2024學年第一學期期末試卷
- 2024年度校園食堂承包與食品安全監(jiān)管合同3篇
- 2024年度汽車貸款信用保證保險合同3篇
- 2024年標準版房地產(chǎn)項目資本金監(jiān)管協(xié)議版B版
- 2024年版:教育貸款申請合同3篇
- 影調(diào)的造型作用
- 呂梁師范高等??茖W?!吨袊鞘邪l(fā)展史》2023-2024學年第一學期期末試卷
- 2024全新指紋鎖智能家居控制系統(tǒng)集成合同2篇
- 2024年特色手工藝品買賣合同詳細
- 2024年標準膩子施工勞務分包合同樣本版B版
- 2024年技術(shù)轉(zhuǎn)讓合同:技術(shù)研發(fā)方與技術(shù)使用方之間的技術(shù)內(nèi)容、轉(zhuǎn)讓費用及技術(shù)支持服務
- 2024年度標準化消防設施保養(yǎng)協(xié)議版B版
- 2024年版:石灰石倉儲服務協(xié)議2篇
- 《紅色江西贛土地》課件
- 長安大學《電工與電子技術(shù)基礎一》2022-2023學年期末試卷
- 24秋國家開放大學《科學與技術(shù)》終結(jié)性考核大作業(yè)參考答案
- 中華人民共和國保守國家秘密法實施條例
- 2024-2025年全國道路隧道、橋梁設計工程師專業(yè)技能及理論知識考試題庫(附含答案)
- 中國特色社會主義理論與實踐研究學習通超星期末考試答案章節(jié)答案2024年
- 2025屆浙江省杭州市高三一模語文試題
- 國開2024年秋《經(jīng)濟法學》計分作業(yè)1-4答案形考任務
評論
0/150
提交評論