版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.用配方法解一元二次方程時,此方程可變形為()A. B. C. D.2.關(guān)于的方程有實數(shù)根,則滿足()A. B.且 C.且 D.3.如圖,⊙O的弦CD與直徑AB交于點P,PB=1cm,AP=5cm,∠APC=30°,則弦CD的長為()A.4cm B.5cm C.cm D.cm4.如圖,是半圓的直徑,點在的延長線上,切半圓于點,連接.若,則的度數(shù)為()A. B. C. D.5.已知點A(﹣3,a),B(﹣2,b),C(1,c)均在拋物線y=3(x+2)2+k上,則a,b,c的大小關(guān)系是()A.c<a<b B.a(chǎn)<c<b C.b<a<c D.b<c<a6.下列各式中,均不為,和成反比例關(guān)系的是()A. B. C. D.7.為了讓人們感受丟棄塑料袋對環(huán)境造成的影響,某班環(huán)保小組的6名同學(xué)記錄了自己家中一周內(nèi)丟棄塑料袋的數(shù)量,結(jié)果如下:(單位:個)33,25,28,26,25,31,如果該班有45名學(xué)生,那么根據(jù)提供的數(shù)據(jù)估計本周全班同學(xué)各家總共丟棄塑料袋的數(shù)量為()A.900個 B.1080個 C.1260個 D.1800個8.如圖,在?APBC中,∠C=40°,若⊙O與PA、PB相切于點A、B,則∠CAB=()A.40° B.50° C.60° D.70°9.如圖,一個正六邊形轉(zhuǎn)盤被分成6個全等三角形,任意轉(zhuǎn)動這個轉(zhuǎn)盤1次,當(dāng)轉(zhuǎn)盤停止時,指針指向陰影區(qū)域的概率是()A. B. C. D.10.已知關(guān)于x的一元二次方程xaxb0ab的兩個根為x1、x2,x1x2則實數(shù)a、b、x1、x2的大小關(guān)系為()A.a(chǎn)x1bx2 B.a(chǎn)x1x2b C.x1ax2b D.x1abx211.一條排水管的截面如圖所示,已知排水管的半徑,水面寬,則截面圓心到水面的距離是()
A.3 B.4 C. D.812.如圖,平行于x軸的直線與函數(shù)y=(k1>0,x>0),y=(k2>0,x>0)的圖象分別相交于A,B兩點,點A在點B的右側(cè),C為x軸上的一個動點,若△ABC的面積為6,則k1﹣k2的值為()A.12 B.﹣12 C.6 D.﹣6二、填空題(每題4分,共24分)13.如圖,在平面直角坐標(biāo)系中,OB在x軸上,∠ABO=90°,點A的坐標(biāo)為(2,4),將△AOB繞點A逆時針旋轉(zhuǎn)90°,點O的對應(yīng)點C恰好落在反比例函數(shù)y=的圖象上,則k的值為_____.14.已知學(xué)校航模組設(shè)計制作的火箭的升空高度h(m)與飛行時間t(s)滿足函數(shù)表達(dá)式,則火箭升空的最大高度是___m15.如圖,直線交x軸于點A,交y軸于點B,點P是x軸上一動點,以點P為圓心,以1個單位長度為半徑作⊙P,當(dāng)⊙P與直線AB相切時,點P的橫坐標(biāo)是_____16.如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是________.17.如果函數(shù)是關(guān)于的二次函數(shù),則__________.18.如圖,在正方形ABCD的外側(cè),作等邊△ABE,則∠BFC=_________°三、解答題(共78分)19.(8分)如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C.(1)請完成如下操作:①以點O為原點、豎直和水平方向為軸、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系;②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD.(2)請在(1)的基礎(chǔ)上,完成下列填空:①寫出點的坐標(biāo):C;D();②⊙D的半徑=(結(jié)果保留根號);③若扇形ADC是一個圓錐的側(cè)面展開圖,則該圓錐的底面的面積為;(結(jié)果保留π)④若E(7,0),試判斷直線EC與⊙D的位置關(guān)系,并說明你的理由.20.(8分)如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩直角邊OA、OB分別在x軸、y軸的正半軸上(OA<OB).且OA、OB的長分別是一元二次方程x2﹣14x+48=0的兩個根,線段AB的垂直平分線CD交AB于點C,交x軸于點D,點P是直線AB上一個動點,點Q是直線CD上一個動點.(1)求線段AB的長度:(2)過動點P作PF⊥OA于F,PE⊥OB于E,點P在移動過程中,線段EF的長度也在改變,請求出線段EF的最小值:(3)在坐標(biāo)平面內(nèi)是否存在一點M,使以點C、P、Q、M為頂點的四邊形是正方形,且該正方形的邊長為AB長?若存在,請直接寫出點M的坐標(biāo):若不存在,請說明理由.21.(8分)寒冬來臨,豆絲飄香,豆絲是鄂州民間傳統(tǒng)美食;某企業(yè)接到一批豆絲生產(chǎn)任務(wù),約定這批豆絲的出廠價為每千克4元,按要求在20天內(nèi)完成.為了按時完成任務(wù),該企業(yè)招收了新工人,新工人李明第1天生產(chǎn)100千克豆絲,由于不斷熟練,以后每天都比前一天多生產(chǎn)20千克豆絲;設(shè)李明第x天(,且x為整數(shù))生產(chǎn)y千克豆絲,解答下列問題:(1)求y與x的關(guān)系式,并求出李明第幾天生產(chǎn)豆絲280千克?(2)設(shè)第x天生產(chǎn)的每千克豆絲的成本是p元,p與x之間滿足如圖所示的函數(shù)關(guān)系;若李明第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達(dá)式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價-成本)22.(10分)已知正比例函數(shù)y=-3x與反比例函數(shù)y=交于點P(-1,n),求反比例函數(shù)的表達(dá)式23.(10分)二次函數(shù)圖象的頂點在原點O,經(jīng)過點A(1,);點F(0,1)在y軸上.直線y=﹣1與y軸交于點H.(1)求二次函數(shù)的解析式;(2)點P是(1)中圖象上的點,過點P作x軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP;(3)當(dāng)△FPM是等邊三角形時,求P點的坐標(biāo).24.(10分)如圖,AB為半圓O的直徑,點C在半圓上,過點O作BC的平行線交AC于點E,交過點A的直線于點D,且∠D=∠BAC(1)求證:AD是半圓O的切線;(2)求證:△ABC∽△DOA;(3)若BC=2,CE=,求AD的長.25.(12分)如圖,⊙O的直徑AB為10cm,弦BC=8cm,∠ACB的平分線交⊙O于點D.連接AD,BD.求四邊形ABCD的面積.26.定義:有兩個相鄰內(nèi)角和等于另兩個內(nèi)角和的一半的四邊形稱為半四邊形,這兩個角的夾邊稱為對半線.(1)如圖1,在對半四邊形中,,求與的度數(shù)之和;(2)如圖2,為銳角的外心,過點的直線交,于點,,,求證:四邊形是對半四邊形;(3)如圖3,在中,,分別是,上一點,,,為的中點,,當(dāng)為對半四邊形的對半線時,求的長.
參考答案一、選擇題(每題4分,共48分)1、D【解析】試題解析:故選D.2、A【分析】分類討論:當(dāng)a=5時,原方程變形一元一次方程,有一個實數(shù)解;當(dāng)a≠5時,根據(jù)判別式的意義得到a≥1且a≠5時,方程有兩個實數(shù)根,然后綜合兩種情況即可得到滿足條件的a的范圍.【詳解】當(dāng)a=5時,原方程變形為-4x-1=0,解得x=-;當(dāng)a≠5時,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5時,方程有兩個實數(shù)根,所以a的取值范圍為a≥1.故選A.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.也考查了一元二次方程的定義.3、D【分析】作OH⊥CD于H,連接OC,如圖,先計算出OB=3,OP=2,再在Rt△OPH中利用含30度的直角三角形三邊的關(guān)系得到OH=1,則可根據(jù)勾股定理計算出CH,然后根據(jù)垂徑定理得到CH=DH,從而得到CD的長.【詳解】解:作OH⊥CD于H,連接OC,如圖,∵PB=1,AP=5,∴OB=3,OP=2,在Rt△OPH中,∵∠OPH=30°,∴OH=OP=1,在Rt△OCH中,CH=,∵OH⊥CD,∴CH=DH=,∴CD=2CH=.故選:D.【點睛】本題考查了含30度角的直角三角形的性質(zhì)、勾股定理以及垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。?、D【分析】根據(jù)題意,連接OC,由切線的性質(zhì)可知,再由圓周角定理即可得解.【詳解】依題意,如下圖,連接OC,∵切半圓于點,∴OC⊥CP,即∠OCP=90°,∵,∴,∴,故選:D.【點睛】本題主要考查了切線的性質(zhì)及圓周角定理,熟練掌握相關(guān)知識是解決本題的關(guān)鍵.5、C【分析】通過確定A、B、C三個點和函數(shù)對稱軸的距離,確定對應(yīng)y軸的大?。驹斀狻拷猓汉瘮?shù)的對稱軸為:x=﹣2,a=3>0,故開口向上,x=1比x=﹣3離對稱軸遠(yuǎn),故c最大,b為函數(shù)最小值,故選:C.【點睛】本題主要考查了二次函數(shù)的性質(zhì),能根據(jù)題意,巧妙地利用性質(zhì)進(jìn)行解題是解此題的關(guān)鍵6、B【分析】判斷兩個相關(guān)聯(lián)的量之間成什么比例,就看這兩個量是對應(yīng)的比值一定,還是對應(yīng)的乘積一定;如果是比值一定,就成正比例;如果是乘積一定,則成反比例.【詳解】解:A.,則,x和y不成比例;B.,即7yx=5,是比值一定,x和y成反比例;C.,x和y不成比例;D.,即y:x=5:8,是比值一定,x和y成正比例.故選B.【點睛】此題屬于根據(jù)正、反比例的意義,辨識兩種相關(guān)聯(lián)的量是否成反比例,就看這兩種量是否是對應(yīng)的乘積一定,再做出選擇.7、C【分析】先求出6名同學(xué)家丟棄塑料袋的平均數(shù)量作為全班學(xué)生家的平均數(shù)量,然后乘以總?cè)藬?shù)45即可解答.【詳解】估計本周全班同學(xué)各家總共丟棄塑料袋的數(shù)量為(個).【點睛】本題考查了用樣本估計總體的問題,掌握算術(shù)平均數(shù)的公式是解題的關(guān)鍵.8、D【分析】根據(jù)切線長定理得出四邊形APBC是菱形,再根據(jù)菱形的性質(zhì)即可求解.【詳解】解:∵⊙O與PA、PB相切于點A、B,∴PA=PB∵四邊形APBC是平行四邊形,∴四邊形APBC是菱形,∴∠P=∠C=40°,∠PAC=140°∴∠CAB=∠PAC=70°故選D.【點睛】此題主要考查圓的切線長定理,解題的關(guān)鍵是熟知菱形的判定與性質(zhì).9、C【解析】試題分析:轉(zhuǎn)動轉(zhuǎn)盤被均勻分成6部分,陰影部分占2份,轉(zhuǎn)盤停止轉(zhuǎn)動時指針指向陰影部分的概率是=;故選C.考點:幾何概率.10、D【分析】根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】如圖,設(shè)函數(shù)y=(x?a)(x?b),當(dāng)y=0時,x=a或x=b,當(dāng)y=時,由題意可知:(x?a)(x?b)?=0(a<b)的兩個根為x1、x2,由于拋物線開口向上,由拋物線的圖象可知:x1<a<b<x2故選:D.【點睛】本題考查一元二次方程,解題的關(guān)鍵是正確理解一元二次方程與二次函數(shù)之間的關(guān)系,本題屬于中等題型.11、D【分析】根據(jù)垂徑定理,OC⊥AB,故OC平分AB,由AB=12,得出BC=6,再結(jié)合已知條件和勾股定理,求出OC即可.【詳解】解:∵OC⊥AB,AB=12∴BC=6∵∴OC=故選D.【點睛】本題主要考查了垂徑定理以及勾股定理,能夠熟悉定理以及準(zhǔn)確的運算是解決本題的關(guān)鍵.12、A【分析】△ABC的面積=?AB?yA,先設(shè)A、B兩點坐標(biāo)(其y坐標(biāo)相同),然后計算相應(yīng)線段長度,用面積公式即可求解.【詳解】解:設(shè):A、B點的坐標(biāo)分別是A(,m)、B(,m),則:△ABC的面積=?AB?yA=?(﹣)?m=6,則k1﹣k2=1.故選:A.【點睛】此題主要考查了反比例函數(shù)系數(shù)的幾何意義,以及圖象上點的特點,求解函數(shù)問題的關(guān)鍵是要確定相應(yīng)點坐標(biāo),通過設(shè)、兩點坐標(biāo),表示出相應(yīng)線段長度即可求解問題.二、填空題(每題4分,共24分)13、1【解析】根據(jù)題意和旋轉(zhuǎn)的性質(zhì),可以得到點C的坐標(biāo),把點C坐標(biāo)代入反比例函數(shù)y=中,即可求出k的值.【詳解】∵OB在x軸上,∠ABO=90°,點A的坐標(biāo)為(2,4),∴OB=2,AB=4∵將△AOB繞點A逆時針旋轉(zhuǎn)90°,∴AD=4,CD=2,且AD//x軸∴點C的坐標(biāo)為(6,2),∵點O的對應(yīng)點C恰好落在反比例函數(shù)y=的圖象上,
∴k=2,故答案為1.【點睛】本題考查反比例函數(shù)圖象上點的坐標(biāo)特征、坐標(biāo)與圖形的變化-旋轉(zhuǎn),解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.14、1【分析】將函數(shù)解析式配方,寫成頂點式,按照二次函數(shù)的性質(zhì)可得答案.【詳解】解:∵==,∵,∴拋物線開口向下,當(dāng)x=6時,h取得最大值,火箭能達(dá)到最大高度為1m.故答案為:1.【點睛】本題考查了二次函數(shù)的應(yīng)用,熟練掌握配方法及二次函數(shù)的性質(zhì),是解題的關(guān)鍵.15、【分析】根據(jù)函數(shù)解析式求得A(3,1),B(1,-3),得到OA=3,OB=3根據(jù)勾股定理得到AB=6,設(shè)⊙P與直線AB相切于D,連接PD,則PD⊥AB,PD=2,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】∵直線交x軸于點A,交y軸于點B,
∴令x=1,得y=-3,令y=1,得x=3,
∴A(3,1),B(1.-3),
∴OA=3,OB=3,
∴AB=6,
設(shè)⊙P與直線AB相切于D,連接PD,則PD⊥AB,PD=1,
∵∠ADP=∠AOB=91°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP=2,
∴OP=3-2或OP=3+2,
∴P(3-2,1)或P(3+2,1),
故答案為:.【點睛】本題考查了切線的判定和性質(zhì),一次函數(shù)圖形上點的坐標(biāo)特征,相似三角形的判定和性質(zhì),正確的理解題意并進(jìn)行分類討論是解題的關(guān)鍵.16、【解析】試題分析:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等邊三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等邊三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D=考點:旋轉(zhuǎn)的性質(zhì).17、1【分析】根據(jù)二次函數(shù)的定義得到且,然后解不等式和方程即可得到的值.【詳解】∵函數(shù)是關(guān)于的二次函數(shù),
∴且,解方程得:或(舍去),
∴.
故答案為:1.【點睛】本題考查二次函數(shù)的定義,關(guān)鍵是掌握二次函數(shù)的定義:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù).18、1【解析】根據(jù)正方形的性質(zhì)及等邊三角形的性質(zhì)求出∠ADE=15°,∠DAC=45°,再求∠DFC,證△DCF?△BCF,可得∠BFC=∠DFC.【詳解】∵四邊形ABCD是正方形,
∴AB=AD=CD=BC,∠DCF=∠BCF=45°
又∵△ABE是等邊三角形,
∴AE=AB=BE,∠BAE=1°
∴AD=AE
∴∠ADE=∠AED,∠DAE=90°+1°=150°
∴∠ADE=(180°-150°)÷2=15°
又∵∠DAC=45°
∴∠DFC=45°+15°=1°在△DCF和△BCF中CD=BC∠DCF=∠BCF∴△DCF?△BCF∴∠BFC=∠DFC=1°
故答案為:1.【點睛】本題主要是考查了正方形的性質(zhì)和等邊三角形的性質(zhì),本題的關(guān)鍵是求出∠ADE=15°.三、解答題(共78分)19、(1)①答案見解析;②答案見解析;(2)①C(6,2);D(2,0);②;③;④相切,理由見解析.【分析】(1)①按題目的要求作圖即可②根據(jù)圓心到A、B、C距離相等即可得出D點位置;(2)①C(6,2),弦AB,BC的垂直平分線的交點得出D(2,0);
②OA,OD長已知,△OAD中勾股定理求出⊙D的半徑=2;
③求出∠ADC的度數(shù),得弧ADC的周長,求出圓錐的底面半徑,再求圓錐的底面的面積;
④△CDE中根據(jù)勾股定理的逆定理得∠DCE=90°,直線EC與⊙D相切.【詳解】(1)①②如圖所示:(2)①故答案為:C(6,2);D(2,0);②⊙D的半徑=;故答案為:;③解:AC=,CD=2,AD2+CD2=AC2,∴∠ADC=90°.扇形ADC的弧長=圓錐的底面的半徑=,圓錐的底面的面積為π()2=;故答案為:;
(4)直線EC與⊙D相切.
證明:∵CD2+CE2=DE2=25,)∴∠DCE=90°.∴直線EC與⊙D相切.【點睛】本題綜合考查了圖形的性質(zhì)和坐標(biāo)的確定,是綜合性較強(qiáng),難度較大的綜合題,圓的圓心D是關(guān)鍵.20、(1)1;(2);(3)存在,所求點M的坐標(biāo)為M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【分析】(1)利用因式分解法解方程x2﹣14x+48=0,求出x的值,可得到A、B兩點的坐標(biāo),在Rt△AOB中利用勾股定理求出AB即可.(2)證明四邊形PEOF是矩形,推出EF=OP,根據(jù)垂線段最短解決問題即可.(3)分兩種情況進(jìn)行討論:①當(dāng)點P與點B重合時,先求出BM的解析式為y=x+8,設(shè)M(x,x+8),再根據(jù)BM=5列出方程(x+8﹣8)2+x2=52,解方程即可求出M的坐標(biāo);②當(dāng)點P與點A重合時,先求出AM的解析式為y=x﹣,設(shè)M(x,x﹣),再根據(jù)AM=5列出方程(x﹣)2+(x﹣6)2=52,解方程即可求出M的坐標(biāo).【詳解】解:(1)解方程x2﹣14x+48=0,得x1=6,x2=8,∵OA<OB,∴A(6,0),B(0,8);在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB===1.(2)如圖,連接OP.∵PE⊥OB,PF⊥OA,∴∠PEO=∠EOF=∠PFO=90°,∴四邊形PEOF是矩形,∴EF=OP,根據(jù)垂線段最短可知當(dāng)OP⊥AB時,OP的值最小,此時OP==,∴EF的最小值為.(3)在坐標(biāo)平面內(nèi)存在點M,使以點C、P、Q、M為頂點的四邊形是正方形,且該正方形的邊長為AB長.∵AC=BC=AB=5,∴以點C、P、Q、M為頂點的正方形的邊長為5,且點P與點B或點A重合.分兩種情況:①當(dāng)點P與點B重合時,易求BM的解析式為y=x+8,設(shè)M(x,x+8),∵B(0,8),BM=5,∴(x+8﹣8)2+x2=52,化簡整理,得x2=16,解得x=±4,∴M1(4,11),M2(﹣4,5);②當(dāng)點P與點A重合時,易求AM的解析式為y=x﹣,設(shè)M(x,x﹣),∵A(6,0),AM=5,∴(x﹣)2+(x﹣6)2=52,化簡整理,得x2﹣12x+20=0,解得x1=2,x2=1,∴M3(2,﹣3),M4(1,3);綜上所述,所求點M的坐標(biāo)為M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【點睛】本題是一次函數(shù)的綜合題型,其中涉及到的知識點有運用待定系數(shù)法求一次函數(shù)的解析式,一元二次方程的解法,正方形的性質(zhì),綜合性較強(qiáng),難度適中.運用數(shù)形結(jié)合、分類討論及方程思想是解題的關(guān)鍵.21、(1),第10天生產(chǎn)豆絲280千克;(2)當(dāng)x=13時,w有最大值,最大值為1.【分析】(1)根據(jù)題意可得關(guān)系式為:y=20x+80,把y=280代入y=20x+80,解方程即可求得;
(2)根據(jù)圖象求得成本p與x之間的關(guān)系,然后根據(jù)利潤等于訂購價減去成本價,然后整理即可得到W與x的關(guān)系式,再根據(jù)一次函數(shù)的增減性和二次函數(shù)的增減性解答;【詳解】解:(1)依題意得:令,則,解得答:第10天生產(chǎn)豆絲280千克.(2)由圖象得,當(dāng)0<x<10時,p=2;當(dāng)10≤x≤20時,設(shè)P=kx+b,把點(10,2),(20,3)代入得,解得∴p=0.1x+1,①1≤x≤10時,w=(4-2)×(20x+80)=40x+160,∵x是整數(shù),∴當(dāng)x=10時,w最大=560(元);②10<x≤20時,w=(4-0.1x-1)×(20x+80)=-2x2+52x+240,=-2(x-13)2+1,∵a=-2<0,∴當(dāng)x=-=13時,w最大=1(元)綜上,當(dāng)x=13時,w有最大值,最大值為1.【點睛】本題考查的是二次函數(shù)在實際生活中的應(yīng)用,主要是利用二次函數(shù)的增減性求最值問題,利用一次函數(shù)的增減性求最值,難點在于讀懂題目信息,列出相關(guān)的函數(shù)關(guān)系式.22、.【分析】將點P的坐標(biāo)代入正比例函數(shù)y=-3x中,即可求出n的值,然后將P點坐標(biāo)代入反比例函數(shù)y=中,即可求出反比例函數(shù)的表達(dá)式.【詳解】解:將點P的坐標(biāo)代入正比例函數(shù)y=-3x中,得n=-3×(-1)=3,故P點坐標(biāo)為(-1,3)將點P(-1,3)代入反比例函數(shù)y=中,得3=解得:m=2故反比例函數(shù)的解析式為:【點睛】此題考查的是求反比例函數(shù)的解析式,掌握用待定系數(shù)法求反比例函數(shù)的解析式是解決此題的關(guān)鍵.23、(1)y=x2;(2)證明見解析;(3)(,3)或(﹣,3).【解析】試題分析:(1)根據(jù)題意可設(shè)函數(shù)的解析式為y=ax2,將點A代入函數(shù)解析式,求出a的值,繼而可求得二次函數(shù)的解析式;(2)過點P作PB⊥y軸于點B,利用勾股定理求出PF,表示出PM,可得PF=PM,∠PFM=∠PMF,結(jié)合平行線的性質(zhì),可得出結(jié)論;(3)首先可得∠FMH=30°,設(shè)點P的坐標(biāo)為(x,x2),根據(jù)PF=PM=FM,可得關(guān)于x的方程,求出x的值即可得出答案.試題解析:(1)∵二次函數(shù)圖象的頂點在原點O,∴設(shè)二次函數(shù)的解析式為y=ax2,將點A(1,)代入y=ax2得:a=,∴二次函數(shù)的解析式為y=x2;(2)∵點P在拋物線y=x2上,∴可設(shè)點P的坐標(biāo)為(x,x2),過點P作PB⊥y軸于點B,則BF=|x2﹣1|,PB=|x|,∴Rt△BPF中,PF==x2+1,∵PM⊥直線y=﹣1,∴PM=x2+1,∴PF=PM,∴∠PFM=∠PMF,又∵PM∥y軸,∴∠MFH=∠PMF,∴∠PFM=∠MFH,∴FM平分∠OFP;(3)當(dāng)△FPM是等邊三角形時,∠PMF=60°,∴∠FMH=30°,在Rt△MFH中,MF=2FH=2×2=4,∵PF=PM=FM,∴x2+1=4,解得:x=±2,∴x2=×12=3,∴滿足條件的點P的坐標(biāo)為(2,3)或(﹣2,3).【考點】二次函數(shù)綜合題.24、(1)見解析;(2)見解析;(3)【分析】(1)要證AD是半圓O的切線只要證明∠DAO=90°即可;(2)根據(jù)兩組角對應(yīng)相等的兩個三角形相似即可得證;(3)先求出AC、AB、AO的長,由第(2)問的結(jié)論△ABC∽△DOA,根據(jù)相似三角形的性質(zhì):對應(yīng)邊成比例可得到AD的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度電影節(jié)開幕式演出委托合同樣本3篇
- 2024-2025學(xué)年揭陽市揭東縣數(shù)學(xué)三年級第一學(xué)期期末達(dá)標(biāo)測試試題含解析
- 企業(yè)快速響應(yīng)市場的組織結(jié)構(gòu)調(diào)整方案研究報告
- 農(nóng)業(yè)科技助力綠色生態(tài)農(nóng)業(yè)發(fā)展
- 2025中國鐵塔集團(tuán)江西分公司招聘22人高頻重點提升(共500題)附帶答案詳解
- 2025中國移動招聘在線統(tǒng)一筆試高頻重點提升(共500題)附帶答案詳解
- 2025中國電信青海黃南分公司招聘高頻重點提升(共500題)附帶答案詳解
- 2025中國電信山東青島分公司校園招聘高頻重點提升(共500題)附帶答案詳解
- 智慧教育相關(guān)行業(yè)投資方案范本
- 2025中國農(nóng)科院北京畜牧獸醫(yī)研究所奶產(chǎn)品質(zhì)量與風(fēng)險評估科技創(chuàng)新團(tuán)隊博士后崗公開招聘高頻重點提升(共500題)附帶答案詳解
- 科研倫理與學(xué)術(shù)規(guī)范(研究生)期末試題庫及答案
- 消防水池 (有限空間)作業(yè)安全告知牌及警示標(biāo)志
- 2022年中醫(yī)藥人才培養(yǎng)工作總結(jié)
- 美甲顧客檔案表Excel模板
- 公安警察工作總結(jié)匯報PPT模板
- 精美小升初簡歷小學(xué)生自我介紹歐式word模板[可編輯]
- 外國文學(xué)專題作業(yè)答案
- 采礦學(xué)課程設(shè)計陳四樓煤礦1.8mta新井設(shè)計(全套圖紙)
- 201X最新離婚協(xié)議書(簡潔版)
- 標(biāo)簽打印流程
- UI界面設(shè)計規(guī)范參考模板
評論
0/150
提交評論