




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋擲一枚質(zhì)地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.2.已知等式成立,則()A.0 B.5 C.7 D.133.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個4.函數(shù)(且)的圖象可能為()A. B. C. D.5.已知等比數(shù)列滿足,,等差數(shù)列中,為數(shù)列的前項和,則()A.36 B.72 C. D.6.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實數(shù)根,則實數(shù)k的取值范圍()A. B. C. D.7.函數(shù)的值域為()A. B. C. D.8.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應填寫()A. B. C. D.9.已知,,由程序框圖輸出的為()A.1 B.0 C. D.10.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準線在第三象限交于點B,過點作準線的垂線,垂足為.若,則()A. B. C. D.11.已知函數(shù),則在上不單調(diào)的一個充分不必要條件可以是()A. B. C.或 D.12.若的展開式中的系數(shù)為-45,則實數(shù)的值為()A. B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正項等比數(shù)列|滿足,且成等差數(shù)列,則取得最小值時的值為_____14.三棱柱中,,側(cè)棱底面,且三棱柱的側(cè)面積為.若該三棱柱的頂點都在同一個球的表面上,則球的表面積的最小值為_____.15.數(shù)列滿足遞推公式,且,則___________.16.若實數(shù)滿足約束條件,設的最大值與最小值分別為,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,其中.(1)當時,設函數(shù),求函數(shù)的極值.(2)若函數(shù)在區(qū)間上遞增,求的取值范圍;(3)證明:.18.(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點,是上異于,的點,.(1)證明:平面平面;(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.19.(12分)選修4-5:不等式選講設函數(shù).(1)當時,求不等式的解集;(2)若在上恒成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù)(1)解不等式;(2)若均為正實數(shù),且滿足,為的最小值,求證:.21.(12分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿足,證明:.22.(10分)已知直線l的極坐標方程為,圓C的參數(shù)方程為(為參數(shù)).(1)請分別把直線l和圓C的方程化為直角坐標方程;(2)求直線l被圓截得的弦長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
首先求出樣本空間樣本點為個,再利用分類計數(shù)原理求出三個正面向上為連續(xù)的3個“1”的樣本點個數(shù),再求出重復數(shù)量,可得事件的樣本點數(shù),根據(jù)古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續(xù)的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復,重復數(shù)量為,事件的樣本點數(shù)為:個.故不同的樣本點數(shù)為8個,.故選:A【點睛】本題考查了分類計數(shù)原理與分步計數(shù)原理,古典概型的概率計算公式,屬于基礎題2.D【解析】
根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應用,考查了特殊值代入法,考查了數(shù)學運算能力.3.B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結(jié)果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數(shù)的計算,當集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎題.4.D【解析】因為,故函數(shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點:1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.5.A【解析】
根據(jù)是與的等比中項,可求得,再利用等差數(shù)列求和公式即可得到.【詳解】等比數(shù)列滿足,,所以,又,所以,由等差數(shù)列的性質(zhì)可得.故選:A【點睛】本題主要考查的是等比數(shù)列的性質(zhì),考查等差數(shù)列的求和公式,考查學生的計算能力,是中檔題.6.D【解析】
做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個交點,而函數(shù)在上有3個交點,則在上有4個不同的交點,數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實數(shù)根,則在上有4個不同的實數(shù)根,當直線經(jīng)過時,;當直線經(jīng)過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數(shù)根.故選:D.【點睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點和方程之間的關系轉(zhuǎn)化為兩個函數(shù)的交點是解題的關鍵,運用數(shù)形結(jié)合是解決函數(shù)零點問題的基本思想,屬于中檔題.7.A【解析】
由計算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域為.故選:A.【點睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎題.8.B【解析】
模擬程序框圖運行分析即得解.【詳解】;;.所以①處應填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.9.D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點:1、程序框圖;2、定積分.10.C【解析】
需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設準線與軸的交點為,過點作,再由三角函數(shù)定義和幾何關系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡即可【詳解】如圖,設準線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題11.D【解析】
先求函數(shù)在上不單調(diào)的充要條件,即在上有解,即可得出結(jié)論.【詳解】,若在上不單調(diào),令,則函數(shù)對稱軸方程為在區(qū)間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數(shù)的函數(shù)的單調(diào)性及充分不必要條件,要注意二次函數(shù)零點的求法,屬于中檔題.12.D【解析】
將多項式的乘法式展開,結(jié)合二項式定理展開式通項,即可求得的值.【詳解】∵所以展開式中的系數(shù)為,∴解得.故選:D.【點睛】本題考查了二項式定理展開式通項的簡單應用,指定項系數(shù)的求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
先由題意列出關于的方程,求得的通項公式,再表示出即可求解.【詳解】解:設公比為,且,時,上式有最小值,故答案為:2.【點睛】本題考查等比數(shù)列、等差數(shù)列的有關性質(zhì)以及等比數(shù)列求積、求最值的有關運算,中檔題.14.【解析】
分析題意可知,三棱柱為正三棱柱,所以三棱柱的中心即為外接球的球心,設棱柱的底面邊長為,高為,則三棱柱的側(cè)面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,∵三棱柱為正三棱柱∴設,∴三棱柱的側(cè)面積為∴又外接球半徑∴外接球表面積.故答案為:【點睛】考查學生對幾何體的正確認識,能通過題意了解到題目傳達的意思,培養(yǎng)學生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題15.2020【解析】
可對左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點睛】本題考查數(shù)列遞推式和累加法的應用,屬于基礎題16.【解析】
畫出可行域,平移基準直線到可行域邊界位置,由此求得最大值以及最小值,進而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當直線過點時,取得最大值7;過點時,取得最小值2,所以.【點睛】本小題主要考查利用線性規(guī)劃求線性目標函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標函數(shù)的基準函數(shù);接著畫出基準函數(shù)對應的基準直線;然后通過平移基準直線到可行域邊界的位置;最后求出所求的最值.屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)極大值,無極小值;(2).(3)見解析【解析】
(1)先求導,根據(jù)導數(shù)和函數(shù)極值的關系即可求出;(2)先求導,再函數(shù)在區(qū)間上遞增,分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值,問題得以解決;(3)取得到,取,可得,累加和根據(jù)對數(shù)的運算性和放縮法即可證明.【詳解】解:(1)當時,設函數(shù),則令,解得當時,,當時,所以在上單調(diào)遞增,在上單調(diào)遞減所以當時,函數(shù)取得極大值,即極大值為,無極小值;(2)因為,所以,因為在區(qū)間上遞增,所以在上恒成立,所以在區(qū)間上恒成立.當時,在區(qū)間上恒成立,當時,,設,則在區(qū)間上恒成立.所以在單調(diào)遞增,則,所以,即綜上所述.(3)由(2)可知當時,函數(shù)在區(qū)間上遞增,所以,即,取,則.所以所以【點睛】此題考查了參數(shù)的取值范圍以及恒成立的問題,以及不等式的證明,構(gòu)造函數(shù)是關鍵,屬于較難題.18.(1)詳見解析;(2).【解析】
(1)由直徑所對的圓周角為,可知,通過計算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標原點,分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,求出相應點的坐標,求出平面的一個法向量和平面的法向量,利用空間向量數(shù)量積運算公式,可以求出二面角的余弦值.【詳解】解:(1)證明:因為半圓弧上的一點,所以.在中,分別為的中點,所以,且.于是在中,,所以為直角三角形,且.因為,,所以.因為,,,所以平面.又平面,所以平面平面.(2)由已知,以為坐標原點,分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,,,,,,.設平面的一個法向量為,則即,取,得.設平面的法向量,則即,取,得.所以,又二面角為銳角,所以二面角的余弦值為.【點睛】本題考查了利用線面垂直判定面面垂直、利用空間向量數(shù)量積求二面角的余弦值問題.19.(1);(2)【解析】
(1)當時,將原不等式化簡后兩邊平方,由此解出不等式的解集.(2)對分成三種情況,利用零點分段法去絕對值,將表示為分段函數(shù)的形式,根據(jù)單調(diào)性求得的取值范圍.【詳解】(1)時,可得,即,化簡得:,所以不等式的解集為.(2)①當時,由函數(shù)單調(diào)性可得,解得;②當時,,所以符合題意;③當時,由函數(shù)單調(diào)性可得,,解得綜上,實數(shù)的取值范圍為【點睛】本小題主要考查含有絕對值不等式的解法,考查不等式恒成立問題的求解,屬于中檔題.20.(1)或(2)證明見解析【解析】
(1)將寫成分段函數(shù)的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,證得不等式成立.【詳解】(1)當時,恒成立,解得;當時,由,解得;當時,由解得所以的解集為或(2)由(1)可求得最小值為,即因為均為正實數(shù),且(當且僅當時,取“”)所以,即.【點睛】本小題主要考查絕對值不等式的求法,考查利用基本不等式證明不等式,屬于中檔題.21.(1)(2)證明見解析【解析】
(1)將函數(shù)轉(zhuǎn)化為分段函數(shù)或利用絕對值三角不等式進行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當時,,當,,當時,,所以解法二:(1)如圖當時,解法三:(1)當且僅當即時,等號成立.當時解法一:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,因為成立,所以原不等式成立.解法二:(2)因為,,,所以,,又因為,所以,所以,原不等式得證.補充:解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理服務方法
- 網(wǎng)絡文學作品影視改編權(quán)合作與分成協(xié)議
- 虛擬游戲裝備交易平臺分割及收益協(xié)議
- 花園圍欄翻新與維護責任協(xié)議
- 譫妄個案護理
- 夫妻忠誠保證及共同債務處理協(xié)議
- 外籍技術顧問駐場咨詢與技術服務協(xié)議
- 生物醫(yī)藥數(shù)據(jù)出境安全審查及合規(guī)操作協(xié)議
- 知識產(chǎn)權(quán)代理機構(gòu)股權(quán)合作與知識產(chǎn)權(quán)戰(zhàn)略布局協(xié)議
- 智慧社區(qū)智能安防系統(tǒng)服務與物業(yè)管理平臺合作協(xié)議
- 21. 三黑和土地 課件
- 挖掘機理論試題及答案
- 2025年銀行從業(yè)資格考試個人理財真題卷權(quán)威解讀
- 興安盟2025年興安盟事業(yè)單位春季專項人才引進30人筆試歷年參考題庫附帶答案詳解
- 西部計劃考試試題及答案
- 2023江蘇南通軌道交通集團有限公司運營分公司公開社會招聘97名工作人員筆試參考題庫附帶答案詳解
- 嬰兒保姆協(xié)議書范本
- 裝修施工危險性較大工程應急處理預案:保障施工安全
- 出版行業(yè)書籍的包裝與運輸實施方案
- 光纜線路工程驗收標準
- 2025南通輔警考試題庫
評論
0/150
提交評論