第四章 跨音速定常小擾動勢流混合差分方法及隱式近似因式分_第1頁
第四章 跨音速定常小擾動勢流混合差分方法及隱式近似因式分_第2頁
第四章 跨音速定常小擾動勢流混合差分方法及隱式近似因式分_第3頁
第四章 跨音速定常小擾動勢流混合差分方法及隱式近似因式分_第4頁
第四章 跨音速定常小擾動勢流混合差分方法及隱式近似因式分_第5頁
已閱讀5頁,還剩107頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第四章跨音速定常小擾動勢流混合差分方法及隱式近似因式分解法

chapter4TheMixedFiniteDifferenceMethod(FDM)forVelocityPotentialFunctionofSteadySmallPerturbationandImplicitApproximateFactorDecompositionMethods主要內(nèi)容:maincontents混合差分解法MixedPDMethod小擾動方程及小擾動激波差分式

Smallperturbationequationandsmallperturbationrelationshipforshockflow小擾動速勢差分方程

Thefinitedifferentialequationofsmallperturbationpotentialfunction邊界條件及邊界條件的嵌入Theinitialconditionandboundarycondition線松弛迭代解法Linearrelaxationiterationmethod升力翼型的跨音速小擾動勢流差分方法FDmethodofvelocitypotentialfunctionforsmallperturbation隱式近似因子分解法ApproximatefactordecompositionmethodAF1方法AF1methodAF2方法AF2method

方法比較Comparisonofthemethod重點:Focus混合差分方法MixedFDMethod

難點:Difficulty隱式近似因子分解法ImplicitApproximatefactorydecomposition第四章跨音速定常小擾動勢流混合差分方法及隱式近似因式分解法

chapter4TheMixedFiniteDifferenceMethodforVelocityPotentialFunctionofSteadySmallPerturbationandImplicitApproximateFactorDecompositionMethods跨音速流:局部超音區(qū)與亞音速同時存在的流場Transonicflow:Localsupersonicflowandsupersonicflowexistsmeantime偏微分方程:混合型方程ThePDE:Mixedtypeequation混合差分方法:用不同的差分方程求解跨聲速流場

MixedFinitedifferencemethodistosolvetransonicflowwithdifferentFDMs混合型方程及流場:采用迭代方法求解,求解之前不知道方程的類型MixedEquationandflowfield,theiterativemethodisusedbecausethetypeoftheequationisunknownbeforeitwassolved小擾動方程:小馬赫(0.6~1.4)流過薄而微變的葉片(機翼或葉柵)時全速勢方程可簡化為小擾動方程

Smallperturbationequation(SPE):whenmachnumberissmall(ie0.6~1.4)thefullvelocitypotentialequationcanbesimplifiedtoSPE混合差分:用混合差分格式求解小擾動方程MixedFDM:TosolveequationusingMFDM混合差分和松弛迭代法求解全速勢方程MixedFDMandRelaxationiteration:Tosolvefullvelocitypotentialequation.優(yōu)缺點:Advantage/disadvantage

跨音速松弛法---速度快,有效Transonicrelaxationmethodfasterefficient

時間推進法:適用范圍廣Timematchingmethods,widelyusage

近似因子分解法:快速Approximatefactordecomposition:faster

多層網(wǎng)格法:收斂性好Multi-gridtechnique:goodconvergence4.1跨聲速小擾動速度勢方程Equationoftransonicsmallperturbationvelocitypotentialfunction跨聲速氣流繞過薄翼的情況Forthecaseoftransonicflowpassathinairfoil二維平面速勢方程2Dvelocitypotentialequation氣流繞過薄翼適用范圍:亞、跨、超音速無旋流動Suitable

case:subsonic,transonic,supersonic

irr-rotational

flow.將流動分解為兩部分:未經(jīng)擾動的流動、擾動流動To

decomposetheflowintounperturbedflowand

perturb

flow未經(jīng)擾動的流動就是無窮遠前方來流Flow

atunperturbedfieldsisfarfieldflow擾動運動速度勢可以用表示。速度可以用表示Potentialfunctionofperturbationflowis,perturbationvelocitycomponents兩部分的合速度勢Thetotalvelocitypotentialfunction代入速勢方程可得小擾動速度應滿足的方程Substitutetheequationandthenthesmallperturbationeq.求得速度場之后,可以得到壓強及壓強系數(shù)為Thepressureandpressurecoefficientcanbeobtainedfromthefollowingequations.再用等熵流動的關系式可得到其他參數(shù)

Thenintroduce

the

isentropy

relationtogetotherparameters比熱比絕熱指數(shù)小擾動條件下,擾動速度遠小于自由來流速度

on

smallperturbationcondition,theperturbationvelocityless

than

free

stream補充條件:

Supplement

conditions來流不能接近音速incoming

flow

velocitydoes

not

approach

sonic

來流非高超聲速incoming

flow

velocitydoes

not

approach

hypersonic為進一步簡化擾動方程,忽略擾動速度一次項,可得到下列關系:Simplified

equation最后得到:

Final

equation應用范圍:亞、超聲速

Suitable

for

subsonic

and

supersonic不適用于跨聲速區(qū)域:對于跨聲速≈1,必須取消補充假設條件,即取消來流不能接近音速的假設,這時速勢方程首項的系數(shù)一次項不能忽略

For

transonic

flow

field

(M≈1),the

supplement

condition,the

first

item

of

the

potential

function

equation

can

not

be

neglected.

跨聲速小擾動方程應為:Thesmall

perturbation

equation

of

velocity

function可以證明:當M∞→1時,

It’sproved,whenM∞→1,因此跨聲速條件下,小擾動方程可以寫成Sothatthesmallperturbationequationattransonicflowcanbewrittenas此方程的類型取決于:Typeoftheequationdependson=B2-4AC=4(M2-1)當M<1時,<0,不存在實特征根,沒有特征線,為橢圓型WhenM<1,norealeigenvalueexists,thatisnocharacterline,theequ.iselliptic.當M>1時,>0,存在兩個特征根,有兩條特征線,為雙曲型WhenM>1,therearetwoeigenvalue,twocharacterlines,theequ.ishyperboliceq.當M=1時,=0,存在一個特征根,有一條特征線,為拋物型WhenM=1,thereisoneeigenvalue,onecharacteristicline,theequ.isparabolic

特征線(當M>1時):斜率

Theslopeofcharacteristicline特征線與x軸夾角為局部馬赫角,對稱于x軸。LocalMachangleistheanglebetweenvelocityvectorandthecharacteristiclinexyoqr’pq’r影響區(qū)依賴區(qū)是馬赫角issocallMachangle

影響區(qū):P點下游由兩條特征線所夾的區(qū)域Influencezone:

upwindzonebetweencharacteristiclines依賴區(qū):P點上游由兩條特征線所夾的區(qū)域Dependzonedownstreamzonebetweenthecharacteristiclines擾動下的壓強系數(shù)公式

Thepressurecoefficientonsmallperturbationcondition§4-2小擾動激波關系式Theshockrelationsofsmallperturbation.

等熵激波小擾動激波的熵增是三階小量Forsmallperturbationshock,entropyincreaseisthirdorder,soitisisentropyshock。

激波的精確速度關系式:Accuratevelocityrelationofshock激波前后的速度關系式(幾何關系)Velocityrelationsinfront/rear-shock即

對于直角坐標系AtCartesiancoordinates

因此sothat由能量方程可得Fromenergyequation由此得到M∞→1時的方程(跨聲速中)Fromwhere,theequationwhenM∞→1,(transonicflow)超聲速中Atsupersonicflow適用范圍:激波前后小擾動方程,適用于等熵波

Aboveeqs.areavailableforsmallperturbationflowinfront/behindoftheshock,i.e.,iso-entropyflow§4-3跨聲速小擾動速勢差分方程

Smallperturbationequationfortransonicflow

混合性方程,在同一流場中不同點所用的差分方程不同。Mixedequation,differentFDEisusedforthescheme一、中心差分格式

CenteralFDEschemeflowfield

對速度勢Forvelocitypotentialfunction一階導數(shù)的差分格式Firstorderdifferenceequationisobtainedas二階導數(shù)的差分格式Plustwoequations,andget2edorderPD二階精度

2ndorder在超音速流中,氣流參數(shù)只受上擾動游影響與下游擾動無關。Atsupersonicflow,theparametersofflowaredependentonupwindperturbationandindependentondownflowperturbation需建立迎風一側差分格式TheupwindonesideFDschemeisneededtobuilt

取上游一側的點構成差分格式TaketheupwindpointtoconstructFDscheme一階精度迎風格式1storderupwindscheme二階精度迎風格式2ndorderupwindscheme二、一側差分格式Oneside

FDEofthederivatives三、亞音速點的差分方程Atsubsonicflowequation取網(wǎng)格點如圖:正交等間距網(wǎng)格Thespacenodesareshownas中心差分格式構成的差分方程即受周圍四點的影響,這是亞聲速流動的特點iseffectbyaroundfourpoints,thisissubsonicfeature

四、超聲速點的差分方程FDEforsupersonicflow當計算點為超音速(M大于1)時,方程為雙曲線型Whenlocalsupersonicflowappear,theequationis

hyperbolic存在依賴區(qū)(上游馬赫錐內(nèi)部)Thedependencezoneexists,(upmachcore)對y的差分可以用中心格式Thecenturialdifferenceisusedforthederivativewithspedtoy對x的差分要用迎風格式UpwindschemeisusedforX-direction顯示格式:差分式取,而不用線法Explicitscheme每次都用i網(wǎng)格線上的已知值,可以從左到右逐點計算Theknownvalueisusedtocalculatethevalueateverynodesequently隱式格式:利用當前網(wǎng)格線上的值構筑差分方程Implicitscheme:usingpresentvaluetoconstructFDE

具有三個未知量(在網(wǎng)格線i上)

Wherethereare3unknownpoints顯式比隱式方便Explicitlyschemeismoreconvenientthanimplicitscheme顯式格式穩(wěn)定區(qū)域小Thestabilityzoneofexplicitissmallerthanthatofimplicitly穩(wěn)定性和收斂性

Stabilityandconvergence收斂性:當步長趨于零時,差分方程解趨于微分方程解Convergence:whensteplengthtendstozero,thesolutionofthePDFtendstothesolutionofPDE穩(wěn)定性:差分誤差在傳播過程中有界且逐漸減小Stability:theerrorislimitedordecreased對波動方程(雙曲型):穩(wěn)定性條件是差分方程依賴區(qū)不小于微分方程的依賴區(qū)Forviberation

Eq,thestabilityconditionisthatthedependentzoneofPDElessthanthatofPDE對超聲速勢函數(shù)

Forpotentialvelocityfuction

差分方程依賴區(qū)半頂角ThehalfconicalangleThedependentzoneoftheFDE微分方程的半頂角theangleofthedependentzone差分方程穩(wěn)定條件為對于跨聲速勢流,不滿足穩(wěn)定條件,因為Fortransonicflow,thestabilityconditionisnotsatisfied跨聲速勢流不能用顯示格式

sotransonicpotentialfunctioncannotsolvewithexplicitmethod隱式格式的依賴范圍大于微分方程的依賴范圍ThedependentzoneofimplicitschemeisgreatthanthatofPEDJ+1JJ-1雙曲方程差分采用一側隱式格式Forhyperbolicequation,onesideimplicitlyschemeisused五、音速點的差分方程Thefinitediffenceatsonicpoints

當M=1時,方程為拋物性,存在一族特征線WhenM=1,theequationisparabolic,thereexistaseriesofcharacteristline速度勢方程化為potentialequationbecome

Subsonic采用差分方程可以寫成UsingFDE六、速度判別式Velocitycriticalcondition

四種情況:

Fourcases

亞聲速sub亞聲速sub

超聲速supe超聲速super

亞聲速sub超聲速super

超聲速super亞聲速subsupersupersonicairfoilⅠⅡⅢ:過渡連續(xù)

continuallychanges

Ⅳ:出現(xiàn)激波參數(shù)不連續(xù)theshockappears,parametersarediscontinous

Ⅲ:有音速線存在Thereexistssonicpoints逐點判別:根據(jù)系數(shù)進行判別Judgeaccordingtothecoefficientof情況的值的值Ⅰ>0>0亞-亞聲速subsonicⅡ<0<0超-超聲速supersonicⅢ>0<0亞-超聲速sonicⅣ<0>0超-亞聲速subsonic中心差分一側差分A

(i,j)點性質(zhì)對應的差分方程any亞音速subsonic超音速supersonic音速點sonic差分方程形式PDEform七.跨聲速小擾動激波的差分方程

PDEfortransonicsmallperturbationshockflow激波處:速度由超聲速過渡到亞聲速Atshock,theflowtransferfromsupersonictosubsonic激波前流場均勻(近似)

Infrontoftheshock,theflowisuniformsupersonicflowi,ji-1ii+1j+1i-1ji,j+1i+1,j+1i+1,ji-1shock激波后流場均勻(近似)Aftertheshock,theflowisalsouniform差分方程(跨聲速小擾動方程的差分形式)FDE(Transonicsmallperturbationflow)對無旋流動(無旋條件)Conditionofirrotationalflow

其差分形式ItsFDform

考慮了無旋條件的擾動速度差分方程Afterconsideringtheirrotatationalconditionthesmallperturbationequationbecomes討論:discussion:

跨聲速區(qū)小擾動激波差分方程與小擾動激波關系相同八、超音速點差分方程的人工粘性

artificial

viscous

for

supersonicFDE速勢方法假設了流場均為等熵流The

velocitypotentialmethodassumethattheflowisiso-entropy導致流場間斷解不唯一(可由亞-超,也可由超-亞)Itleadsto

non-unique

solution如果采用迎風格式(單側差分),則只適合壓縮突躍(由超-亞),不可能出現(xiàn)膨脹解。Continuous

solution,if

theupwindschemeisused,thesolutiononlysuitableforcompressiblesharpincrease(shock),notsuitableforsharpdecrease.超聲速點差分方程(迎風格式)FDE

of

thepotentialequationatsupersonicflow原因:采用1階迎風格式1st

order

upwind

scheme應用當?shù)豈數(shù)改成相對應的微分方程UsinglocalMachnumberMtorewritethePDEthen其中類似于跨音速小擾動粘性流方程中的粘性項。稱為人工粘性

Where

issimilarastheviscousformofsmallpertubationequation,socalleditartificialviscous差分方程的解只含壓縮突躍,即激波(是熵增過程)PDEonlyincludescompressedshapechange(wheretheentropycreases)不可能產(chǎn)生膨脹突躍(即熵減過程)Notsuitableforexpandingshapechange(whereentropydecreases)4.4邊界條件及其嵌入

EmbedingofBoundaryconditions一、邊界條件(BoundaryCondition)1.物面:無粘,無穿透條件onwallnonormalvelocity對于翼型(葉柵),設物面方程為,則定常流動邊界條件即:若翼型上下表面可表示為則速度分量可寫成

上表面的邊界條件為BConupsurfaceis其中,,為擾動速度Where,istheperturbationvelocitycomponents對于薄翼型Forthinwing小迎角下,時ForsmallAOA,when故上表面(onupsurface)或?qū)懗蒾rbewrittenas

同理,對于下表面meantimeforlowerside綜合上下表面可以寫成以下小擾動方程翼型上下表面邊界條件Considerupperandlowersideofairfoil,thesmallperturbationssatisfyfollowingcondition2.庫塔條件(后緣邊界條件)Kuttacondition(trailingedgecondition)上下表面流線在后緣尖點平滑匯合thestreamlinesonupsideandLower-sidesmoothlysinksattrailingedge在受氣動載荷時,速度勢在后緣不連續(xù),形成間斷面。Undertheaerodynamicloads,velocitypotentialfunctionattractingedgeisdiscontinuous在這條間斷面上必須滿足Onthediscontinuitysurface,whatmustsatisfyis。。后上下c

(1)上下壓強相等

the

pressureonup

andlowersideofairfoilisequal

(2)速度方向相同,大小不同

the

direction

ofvelocityareconsistent,butthevalueofthevelocityisnotequal

小擾動條件下,因此上述方程可寫成:

forsmallperturbation,aboveequationscanbewrittenas:

經(jīng)間斷面速度勢變化稱為環(huán)量

through

the

section

surface

the

velocity

potential

function

changes

is

circulation.3.遠場條件Farfieldcondition用有限遠代替無限遠場,擾動速度勢的近似條件為:usinglimitedfarfieldreplacetherealfarfieldperturbationvelocitypotentialfunctionBCcanbewrittenas:二、邊界條件的嵌入Embedingoftheboundarycondition邊界點上速度勢應同時滿足邊界條件和速勢方程OnboundarythevelocitypotentialfunctionsatisfyboththeBCandthepotentialEq.1.物面邊界嵌入Embedingofwallboundarycondition翼型上表面Ontheairfoilsurface將速勢拓延到邊界的另一側(i,j-1)Extendthevelocitypotentialfunctiontoothersideofboundary即Or邊界點的中心差分Thecentraldifferenceonboundary利用邊界條件得到:UsingBCthenget2.庫塔條件的嵌入EmbeddingofKuttacondition增加新方程使上下表面上相同,即Additionalnewequationtomakeconsistentonupandlowersurface3.遠場條件的嵌入Embeddingoffarfieldcondition根據(jù)具體問題特點建立運動場的計算方法Tofoundthecomputationmethodaccordingtothecharacterofcertainproblem對于自由繞流,運動速度為,自由來流的速度勢為forafreeflowaroundtheairfoil,thefarfieldvelocityis,andthevelocitypotentialfunctionoffreeflowis擾動速度勢應滿足Thereforetheperturbationvelocitypotentialsatisfy§4.5線松弛迭代解法

Thelinerelaxationiterationmethod一、非線性代數(shù)方程的迭代解法Iterativemethodfornon-linearequations跨聲速小擾動速勢方程是非線性的TransonicsmallperturbationequationisnonlinearPDE其差分方程為非線性代數(shù)方程,即系數(shù)是與函數(shù)值或其導數(shù)有關ItsFDEisalsononlinearequationthatisitscoefficientsarerelatedtothevariables迭代求解:

Iterationmethod把系數(shù)假設成已知量,每次求解之后再重新計算系數(shù),再次求解直到得出收斂解為止.Assumethecoefficientareknownatfirstiteration,thenrecalculatethecoefficientsagainafteronceiteration,repeatiterationuntiltheiterationconvergences二、高階代數(shù)方程的線松弛解法

ThelinerelaxationiterationmethodforHighorderarithmeticlinearequations

高階線性方程組,線性化后的差分方程

Highorderlinearequations,linearizedFDE階數(shù)為,M為網(wǎng)格點數(shù),n為問題的維數(shù).或階數(shù)M*N*L(M,N,L為空間三坐標方向的網(wǎng)格點數(shù))Theorderoflinear-algebraequationis,whereMisthenumberofthegrids,nisthenumberofdimension.Theorderoflinear-algebraequationisM*N*L,whereM,N,Larenumberofgridsincoordinatesx,yandz松弛迭代:Relaxationiteration

輪流放松流場中的的部分速勢,將其假設為未知,其余部分看成已知的,利用線性方程組聯(lián)立求解

Relaxatethepotentialfunctionsequently,assumethatthepresentpointisunknown,andothersareknown.松弛迭代點松弛:每次把一個點作為未知點Pointrelaxation:onlyonepointisassumedtobeunknown線松弛:每次把一條網(wǎng)格線上的所有點作為未知Linerelaxation:allpointononegridlineareassumedtobeunknown線松弛linerelaxationj線松弛linerelaxationi線松弛法:要求內(nèi)存較多,方程組的個數(shù)減少到一維點數(shù)Linerelaxation:requiremorememorysource,thenumberofequationequalstothenumberof1Dpointsij點松弛pointrelaxation逐點松弛:要求內(nèi)存較少(為線性松弛的倍),掃描流場中的各個網(wǎng)格點,把周圍點均看成是已知點。Sequentpoint:requirelessmemoryresource,onlytimesoflineelaxation.Scanallthegridpointssequently.線松弛方程組可采用三對角矩陣快速解法Forlinerelaxationmethod,thetri-diagonalarraycanbesolvewithquickmethod.三、簡單迭代和改進迭代Improvemethodofsimpleiterationmethod簡單迭代:迭代公式右端的速度勢全部采用前次迭代結果Simpleiteration,allparametersonrighthandareoldvalueoflastiteration.改進迭代:每次迭代都用最新速度勢值代替右端項。速度判別式要用簡單迭代方式計算,則會導致超臨界氣流計算振蕩發(fā)散。Theimprovediterationmethodalwaysusesthenewestvalue,andthevelocitycriteriamustbecalculatedaccordingtothesimpleiterationway,otherwise

thedivergencewilloccuratcriticalstate.四、追趕法Thechasemethod求解三對角矩陣線性方程快速方法Itisafastmethodtosolvetri-diagonalmatrix線松弛方法求解方程組Equationforlinerelaxationmethod對于邊界點:forboundarypoints上邊界upboundary下邊界lower

boundaryj=1,2……Ni-1,ji,ji,j-1i,j+1i+1,j對應的系數(shù)矩陣為三對角矩陣

追趕法:順著消去,逆著帶入。從上至下消去首項,從下而上代入末項。Thechasemethod:eliminatingsequently,substitutinginversely.Eliminatefromtoptodown,substitutefromdowntoup.五、初場Initialfield

初始值分布:影響收斂速度Initialfielddistributionofparameterswillinfluenceconvergence對亞音速流場:可以選全場速度勢為0,即未經(jīng)擾動Subsonicflowfield:globefieldcanbeputas0,thatistheflowisnotdisturbed對跨音速流場:初值選取需謹慎,合理初場能加速收斂Fortransonicflowinitialvaluemustgivencarefully,thereasonableinitialvaluemightaccelerateconvergence

一般應選用與流場相近的速度勢分布Usuallyselectanearsolutionofpotentialfunction可以用相近的亞聲速計算結果Theapproximatelysubsonicresultcanbeused六、收斂標準Criterionofconvergence所有點相鄰兩次計算所得的速勢差別的最大值Themaximumdifferencebetweentwoimmediatevicinityiterative可以用與初始比值判別收斂

theratioofcurrentandinitialcanbethecriterion七、超松弛法Superrelaxationmethod加速速度勢函數(shù)的修正步伐Toacceleratetheconvergence

超松弛

superrelaxation

弱松弛weakrelaxation

八、加密網(wǎng)格法Meshrefinemethod計算精度增加,計算網(wǎng)格數(shù)增加Toincreasetheprecision,toincreasethemeshNo.問題復雜度增加TheincreaseofcomplexitytoincreasethemeshNo.計算機時與網(wǎng)格總點數(shù)以正比增加computationtimeincreaseasthemeshNo.采用疏密結合的方法可以減少計算時間

Usingcoarse/finemeshmaydecreasecomputationtime加密網(wǎng)格法:先用疏網(wǎng)格數(shù)算初始場,加密之后獲得精確解meshesrefiningmethod多重網(wǎng)格:先疏后密、再疏;交替使用疏密相間的網(wǎng)格multiplegrid*§4-6繞升力翼型的跨聲速小擾動勢流差分計算方法FDMforpotentialfunctionoftransonicsmallperturbationflowaroundairfoil一、繞升力翼型的跨聲速小擾動方程勢流的差分方程Theequationforpotentialfunctionoftransonicsmallperturbationflowaroundairfoil4—7隱式近似因式分解法的基本思想

ThebasicconceptofApproximateDecompositionMethod求解速度勢方程的快速收斂解法ItisafastworkingmethodforPotationequationSLOR是顯式迭代方法,因此收斂慢SLORisfullexplicitmethod,thusitworksslowly全隱式松弛算法:每次迭代中流場中的任意一點能受到它的依賴區(qū)中全部其點的影響

Fullimplicitrelaxationmethod,anypointinflowfieldcanbeinfluencedbyallotherpointsADI(AlternatingDirectionImplicit)交替方向隱式迭代,分為AF1和AF2UsingAF1andAF2基本差分算子:Somebasicfinitedifferencecalculator迎風差分(前差)upwindFD順風差分(后差)backward/rearwardFD二階中心差分:2ndordercentralFD二階一側迎風差分:upwind2ndonesideFD位移算子:displacement(FD)calculator用位移算子表示差分算子

TheFDexpressedusingdisplacementcalculators差分算子位移:ThedisplacementofFDcalculator差分算子的分解與組合:ThedecompositionandcombinationofFDs差分方程可以用算子表示TheexpressionofFDEusingFDcalculatorL代表未經(jīng)松弛的差分算子

FDcalculatorrelaxation松弛差分算子N,第n次迭代的修正值為TheFDcalculatorofrelaxationiteration,thecorrectionofnthiteration.算子表達式:

Calculatorexpression當松弛迭代收斂時,,即兩者相同Whentheiterationconverged,bothcalculatorarethesame

.

當時,表示其不是差分方程的解,因此表示差分方程滿足微分方程的程度。When,denotesthesolutionofFDEisnotthesolutionoftheoriginalPDE,thereforedenotesthedegreeofhowdosetheFDEsatisfythePDE.差分松弛迭代算子的選取原則TheprincipleforseleetingFDcalculator

便于求解,線性,有快速解法convenienceforsolvingequation,linearmethod,fastsolver

穩(wěn)定,能達到收斂標準stable

高效,N盡可能接近L。

higherefficiency,NapproachingL差分算子的用途:可以清晰的顯示差分方程的結構UsageofthePDcalculator,itmakestheFDEsimpleandevident近似因式分解的基本思路ThebasicconsiderationofapproximatedecomposeLaplace方程的差分格式(簡單迭代法)TheFDschemeofLaplaceequation(simpleiterationmethod)

改進的迭代法

improvediterationmethod松弛迭代格式

Relaxationiteration

scheme中間值由此then還原為(n)和(n-1)表達式后差分方程還原為ExpresstheFDEusing(n)and(n-1)改進的差分格式為

ImprovementofFDE或(隱式)or(ImplicitForm)引入差分算子,采用差分算子表示,并令IntroducetheFDcalculator,usingFDcalculatorexpression.則松弛迭代法的差分格式為:TheFDschemeofrelaxationiterationis線松弛迭代對應的差分格式FDSrelatedtolinerelaxationiterationis因此超松弛差分算子Thus,thesuper-relaxationFDcalculatorisN分解成兩個因式的乘積,則IffactorizeNintotwofactors,then

4-8AF1方法AF1method小擾動速勢方程Equationofpotentialfunctionforsmallperturbationflow其中,對亞音速小擾動??捎弥行牟罘指袷交螂[式方程Where,forsubsonicpoint,thecentralschemecanbeused其中where令Let

則小擾動速勢方程的隱式差分格式為Then,theimplicitFDEschemeofthesmallperturbationpotentialis分解第一項系數(shù)

Tofactorizethefirstcoefficientterm原系數(shù)origin誤差error松弛差分算子N可分解成為N1和N2,為加速收斂參數(shù),求解可分兩步,

RelaxationPDEcalculatorNcanbefactorizedIntoN1andN2,thesolvingcanbedecomposeintotwosteps

代表中間結果Whereisamiddleresult交替方向隱式差分格式(ADI,or,ApproximateFactorization)

Step1:全場沿X方向線松弛,解三對角矩陣

Xdirectionlinerelaxation,tosolvetrianglematrixStep2:全場方向沿y方向線松弛,也解三對角矩陣

Ydirectionlinerelaxation,tosolveatrianglematrix全隱式格式,對亞聲速區(qū)適用,稱為AF1,

fullimplicitscheme,Forsubsonicit’scallAFI

對超音速點,采用迎風格式Forsupersonicpointstheupwindschemeisused對應兩步

Correspondingtwostepsare1.

2.二、AFI的收斂性TheconvergenceofAFI亞音速點(中心差分格式)等價于時間相依方程(將迭代過程看成時間推進)Forsubsonic(centralPDEscheme),thesolvingprecedingisequivalenttoatime-dependentproblem設和,當與系數(shù)異號時,差分方程的解收斂于微分方程的解。andhavedifferentsign,thenthePDEconvergestwothePDE三、AF1的穩(wěn)定性StabilityofAFI采用Vonneumann方法分析誤差UsingVoneumannanalyticmethod代入AF1差分方程SubstituteintothePDEofAFI其中where假設,為實數(shù)Assume,isrealnumber收斂條件:Theconditionofconvergence即or穩(wěn)定性條件:

stabilitycondition兩個可選參數(shù)和,適當選取可以加快收斂Twoparametersandcanbechosencarefullytogetquickconvergence取得到最短迭代次數(shù)()Take,thengetminimiterationtimes對應的最佳選擇是:CorrespondingopticalchoiceisAFI中所有的誤差Fourier分量均可以同速度下降

AFIerrorcomponentsofFourierseriesmaydecrease超聲速點的AF1差分方程等價于(4-8-12),但沒有阻尼項

TheAFIforsupersonicpointitequaltoequation(4-8-12)

亞,超聲速流混合問題,AF1第一個算子需四對角矩陣求逆Forsub-super-sonicmixedproblem,AFIhastosolvefour-diagonalmatrix,thustheefficiencyislower對此類流動,AF1不是最有效的方法Forsuchflow,AFIisnotthemostefficiencyone§4-9AF2方法

methodofAF2對超聲速流增加時間阻尼項,取Forsupersonicflow,thetunedampingistraduced差分算子FDcalculatorwithupwindscheme對超聲速點,?。篎orsupersonicflowpoint等價的一階微分方程(時間依存)Equivalent1storderPDE(timedependent)其中,為超聲速阻尼項,當時,與系數(shù)同號,大小取決于

Where,issupersonicdamping,whenthecofficentofandhavethesamesignandthequantitydependson更加高效(有阻尼)ItishigherefficiencyAF2格式對亞聲速流收斂性比AF1差AF2convergenceforsubsonicisworstthanAF1亞,超聲速點的兩步AF2格式如下:Forsub-supersonicflow,twosteps,AF2havefollowingscheme亞:(y方向線松弛x方向迎風格式)

sub

LinerelaxationinYupwindschemeinX

(x向線松弛x方向順風格式)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論