2022-2023學年廣西賀州市達標名校中考數(shù)學押題試卷含解析_第1頁
2022-2023學年廣西賀州市達標名校中考數(shù)學押題試卷含解析_第2頁
2022-2023學年廣西賀州市達標名校中考數(shù)學押題試卷含解析_第3頁
2022-2023學年廣西賀州市達標名校中考數(shù)學押題試卷含解析_第4頁
2022-2023學年廣西賀州市達標名校中考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點,則y1<yA.①② B.②③ C.②④ D.①③④2.已知正比例函數(shù)的圖象經過點,則此正比例函數(shù)的關系式為().A. B. C. D.3.如圖,將△OAB繞O點逆時針旋轉60°得到△OCD,若OA=4,∠AOB=35°,則下列結論錯誤的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=44.如圖是由若干個小正方體組成的幾何體從上面看到的圖形,小正方形中的數(shù)字表示該位置小正方體的個數(shù),這個幾何體從正面看到的圖形是()A. B. C. D.5.若m,n是一元二次方程x2﹣2x﹣1=0的兩個不同實數(shù)根,則代數(shù)式m2﹣m+n的值是()A.﹣1 B.3 C.﹣3 D.16.如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,AE=AF,AC與EF相交于點G,下列結論:①AC垂直平分EF;②BE+DF=EF;③當∠DAF=15°時,△AEF為等邊三角形;④當∠EAF=60°時,S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④7.在下面的四個幾何體中,左視圖與主視圖不相同的幾何體是()A. B. C. D.8.如圖,已知點A(1,0),B(0,2),以AB為邊在第一象限內作正方形ABCD,直線CD與y軸交于點G,再以DG為邊在第一象限內作正方形DEFG,若反比例函數(shù)的圖像經過點E,則k的值是()(A)33(B)34(C)35(D)369.如圖,在RtΔABC中,AB=9,BC=6,∠B=90°,將ΔABC折疊,使A點與BC的中點D重合,折痕為MN,則線段BN的長為()A.52 B.53 C.410.數(shù)據(jù)4,8,4,6,3的眾數(shù)和平均數(shù)分別是()A.5,4 B.8,5 C.6,5 D.4,5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,自左至右,第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成;第2個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成;…按照此規(guī)律,第n個圖中正方形和等邊三角形的個數(shù)之和為______個.12.某市居民用電價格如表所示:用電量不超過a千瓦時超過a千瓦時的部分單價(元/千瓦時)0.50.6小芳家二月份用電200千瓦時,交電費105元,則a=______.13.實數(shù),﹣3,,,0中的無理數(shù)是_____.14.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為_______.15.計算:|﹣3|+(﹣1)2=.16.如圖,線段AB的長為4,C為AB上一個動點,分別以AC、BC為斜邊在AB的同側作兩個等腰直角三角形ACD和BCE,連結DE,則DE長的最小值是_____.三、解答題(共8題,共72分)17.(8分)如圖,在?ABCD中,AE⊥BC交邊BC于點E,點F為邊CD上一點,且DF=BE.過點F作FG⊥CD,交邊AD于點G.求證:DG=DC.18.(8分)如圖,AB是⊙O的直徑,BE是弦,點D是弦BE上一點,連接OD并延長交⊙O于點C,連接BC,過點D作FD⊥OC交⊙O的切線EF于點F.(1)求證:∠CBE=∠F;(2)若⊙O的半徑是2,點D是OC中點,∠CBE=15°,求線段EF的長.19.(8分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.(1)請你用直尺和圓規(guī)作出這個輸水管道的圓形截面的圓心(保留作圖痕跡);(2)若這個輸水管道有水部分的水面寬AB=8cm,水面最深地方的高度為2cm,求這個圓形截面的半徑.20.(8分)十八屆五中全會出臺了全面實施一對夫婦可生育兩個孩子的政策,這是黨中央站在中華民族長遠發(fā)展的戰(zhàn)略高度作出的促進人口長期均衡發(fā)展的重大舉措.二孩政策出臺后,某家庭積極響應政府號召,準備生育兩個小孩(假設生男生女機會均等,且與順序無關).(1)該家庭生育兩胎,假設每胎都生育一個小孩,求這兩個小孩恰好都是女孩的概率;(2)該家庭生育兩胎,假設第一胎生育一個小孩,且第二胎生育一對雙胞胎,求這三個小孩中恰好是2女1男的概率.21.(8分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=1.(1)求拋物線的解析式及點D的坐標;(2)連接BD,F(xiàn)為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.22.(10分)某運動品牌對第一季度A、B兩款運動鞋的銷售情況進行統(tǒng)計,兩款運動鞋的銷售量及總銷售額如圖6所示.1月份B款運動鞋的銷售量是A款的4523.(12分)如圖,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一點P,使PA+PB=BC;(尺規(guī)作圖,不寫作法,保留作圖痕跡)求BP的長.24.如圖,某反比例函數(shù)圖象的一支經過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.求該反比例函數(shù)的解析式;若△ABC的面積為6,求直線AB的表達式.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:根據(jù)題意可得:a<0,b>0,c>0,則abc<0,則①錯誤;根據(jù)對稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據(jù)函數(shù)的軸對稱可得:當x=2時,y>0,即4a+2b+c>0,則③錯誤;對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大,則點睛:本題主要考查的就是二次函數(shù)的性質,屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對稱軸在y軸左邊,則b的符號與a相同,如果對稱軸在y軸右邊,則b的符號與a相反;如果題目中出現(xiàn)2a+b和2a-b的時候,我們要看對稱軸與1或者-1的大小關系再進行判定;如果出現(xiàn)a+b+c,則看x=1時y的值;如果出現(xiàn)a-b+c,則看x=-1時y的值;如果出現(xiàn)4a+2b+c,則看x=2時y的值,以此類推;對于開口向上的函數(shù),離對稱軸越遠則函數(shù)值越大,對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大.2、A【解析】

根據(jù)待定系數(shù)法即可求得.【詳解】解:∵正比例函數(shù)y=kx的圖象經過點(1,﹣3),∴﹣3=k,即k=﹣3,∴該正比例函數(shù)的解析式為:y=﹣3x.故選A.【點睛】此類題目需靈活運用待定系數(shù)法建立函數(shù)解析式,然后將點的坐標代入解析式,利用方程解決問題.3、D【解析】

由△OAB繞O點逆時針旋轉60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,據(jù)此可判斷C;由△AOC、△BOD是等邊三角形可判斷A選項;由∠AOB=35°,∠AOC=60°可判斷B選項,據(jù)此可得答案.【詳解】解:∵△OAB繞O點逆時針旋轉60°得到△OCD,

∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C選項正確;

則△AOC、△BOD是等邊三角形,∴∠BDO=60°,故A選項正確;

∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B選項正確.

故選D.【點睛】本題考查旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等及等邊三角形的判定和性質.4、C【解析】

先根據(jù)俯視圖判斷出幾何體的形狀,再根據(jù)主視圖是從正面看畫出圖形即可.【詳解】解:由俯視圖可知,幾何體共有兩排,前面一排從左到右分別是1個和2個小正方體搭成兩個長方體,

后面一排分別有2個、3個、1個小正方體搭成三個長方體,

并且這兩排右齊,故從正面看到的視圖為:.

故選:C.【點睛】本題考查幾何體三視圖,熟記三視圖的概念并判斷出物體的排列方式是解題的關鍵.5、B【解析】

把m代入一元二次方程,可得,再利用兩根之和,將式子變形后,整理代入,即可求值.【詳解】解:∵若,是一元二次方程的兩個不同實數(shù)根,∴,∴∴故選B.【點睛】本題考查了一元二次方程根與系數(shù)的關系,及一元二次方程的解,熟記根與系數(shù)關系的公式.6、C【解析】

①通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質就可以得出EC=FC,就可以得出AC垂直平分EF,②設BC=a,CE=y,由勾股定理就可以得出EF與x、y的關系,表示出BE與EF,即可判斷BE+DF與EF關系不確定;③當∠DAF=15°時,可計算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出x與y的關系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過比較大小就可以得出結論.【詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關系不確定,只有當y=(2?)a時成立,(故②錯誤).③當∠DAF=15°時,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.【點睛】本題考查了正方形的性質的運用,全等三角形的判定及性質的運用,勾股定理的運用,等邊三角形的性質的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質解題時關鍵.7、B【解析】

由幾何體的三視圖知識可知,主視圖、左視圖是分別從物體正面、左面看所得到的圖形,細心觀察即可求解.【詳解】A、正方體的左視圖與主視圖都是正方形,故A選項不合題意;B、長方體的左視圖與主視圖都是矩形,但是矩形的長寬不一樣,故B選項與題意相符;C、球的左視圖與主視圖都是圓,故C選項不合題意;D、圓錐左視圖與主視圖都是等腰三角形,故D選項不合題意;故選B.【點睛】本題主要考查了幾何題的三視圖,解題關鍵是能正確畫出幾何體的三視圖.8、D【解析】試題分析:過點E作EM⊥OA,垂足為M,∵A(1,0),B(0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB==,∵AB//CD,∴∠ABO=∠CBG,∵∠BCG=90°,∴△BCG∽△AOB,∴,∵BC=AB=,∴CG=2,∵CD=AD=AB=,∴DG=3,∴DE=DG=3,∴AE=4,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO,又∵∠EMA=90°,∴△EAM∽△ABO,∴,即,∴AM=8,EM=4,∴AM=9,∴E(9,4),∴k=4×9=36;故選D.考點:反比例函數(shù)綜合題.9、C【解析】

設BN=x,則由折疊的性質可得DN=AN=9-x,根據(jù)中點的定義可得BD=3,在Rt△BND中,根據(jù)勾股定理可得關于x的方程,解方程即可求解.【詳解】設BN=x,則AN=9-x.由折疊的性質,得DN=AN=9-x.因為點D是BC的中點,所以BD=3.在RtΔNBD中,由勾股定理,得BN即x2解得x=4,故線段BN的長為4.故選C.【點睛】此題考查了折疊的性質,勾股定理,中點的定義以及方程思想,熟練掌握折疊的性質及勾股定理是解答本題的關鍵.10、D【解析】

根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù),再根據(jù)平均數(shù)的計算公式求出平均數(shù)即可【詳解】∵4出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是4;這組數(shù)據(jù)的平均數(shù)是:(4+8+4+6+3)÷5=5;故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、9n+1.【解析】

∵第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成,∴正方形和等邊三角形的和=6+6=12=9+1;∵第2個圖由11個正方形和10個等邊三角形組成,∴正方形和等邊三角形的和=11+10=21=9×2+1;∵第1個圖由16個正方形和14個等邊三角形組成,∴正方形和等邊三角形的和=16+14=10=9×1+1,…,∴第n個圖中正方形和等邊三角形的個數(shù)之和=9n+1.故答案為9n+1.12、150【解析】

根據(jù)題意可得等量關系:不超過a千瓦時的電費+超過a千瓦時的電費=105元;根據(jù)等量關系列出方程,解出a的值即可.【詳解】∵0.5×200=100<105,∴a<200.由題意得:0.5a+0.6(200-a)=105,解得:a=150.故答案為:150【點睛】此題主要考查了一元一次方程的應用,關鍵是正確找出題目中的等量關系,列出方程.13、【解析】

無理數(shù)包括三方面的數(shù):①含π的,②一些開方開不盡的根式,③一些有規(guī)律的數(shù),根據(jù)以上內容判斷即可.【詳解】解:=4,是有理數(shù),﹣3、、0都是有理數(shù),是無理數(shù).故答案為:.【點睛】本題考查了對無理數(shù)的定義的理解和運用,注意:無理數(shù)是指無限不循環(huán)小數(shù),包括三方面的數(shù):①含π的,②一些開方開不盡的根式,③一些有規(guī)律的數(shù).14、【解析】

設△OAC和△BAD的直角邊長分別為a、b,結合等腰直角三角形的性質及圖像可得出B的坐標,根據(jù)三角形的面積公式結合反比例函數(shù)系數(shù)k的幾何意義即可求解.【詳解】設△OAC和△BAD的直角邊長分別為a、b,則B點坐標為(a+b,a-b)∵點B在反比例函數(shù)y=在第一象限的圖象上,∴(a+b)(a-b)=a2-b2=3∴S△OAC﹣S△BAD=a2-b2=【點睛】此題主要考查等腰直角三角形的面積求法和反比例函數(shù)k值的定義,解題的關鍵是熟知等腰直角三角形的性質及反比例函數(shù)k值的性質.15、4.【解析】

|﹣3|+(﹣1)2=4,故答案為4.16、2【解析】試題分析:由題意得,DE=CD2+CE2;C為AB上一個動點,分別以AC、BC為斜邊在AB的同側作兩個等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得AC2=AD2+CD2考點:不等式的性質點評:本題考查不等式的性質,會用勾股定理,完全平方公式,不等關系等知識,它們是解決本題的關鍵三、解答題(共8題,共72分)17、證明見解析.【解析】試題分析:先由平行四邊形的性質得到∠B=∠D,AB=CD,再利用垂直的定義得到∠AEB=∠GFD=90°,根據(jù)“ASA”判定△AEB≌△GFD,從而得到AB=DC,所以有DG=DC.試題解析:∵四邊形ABCD為平行四邊形,∴∠B=∠D,AB=CD,∵AE⊥BC,F(xiàn)G⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.考點:1.全等三角形的判定與性質;2.平行四邊形的性質.18、(1)詳見解析;(1)【解析】

(1)連接OE交DF于點H,由切線的性質得出∠F+∠EHF=90°,由FD⊥OC得出∠DOH+∠DHO=90°,依據(jù)對頂角的定義得出∠EHF=∠DHO,從而求得∠F=∠DOH,依據(jù)∠CBE=∠DOH,從而即可得證;(1)依據(jù)圓周角定理及其推論得出∠F=∠COE=1∠CBE=30°,求出OD的值,利用銳角三角函數(shù)的定義求出OH的值,進一步求得HE的值,利用銳角三角函數(shù)的定義進一步求得EF的值.【詳解】(1)證明:連接OE交DF于點H,∵EF是⊙O的切線,OE是⊙O的半徑,∴OE⊥EF.∴∠F+∠EHF=90°.∵FD⊥OC,∴∠DOH+∠DHO=90°.∵∠EHF=∠DHO,∴∠F=∠DOH.∵∠CBE=∠DOH,∴(1)解:∵∠CBE=15°,∴∠F=∠COE=1∠CBE=30°.∵⊙O的半徑是,點D是OC中點,∴.在Rt△ODH中,cos∠DOH=,∴OH=1.∴.在Rt△FEH中,∴【點睛】本題主要考查切線的性質及直角三角形的性質、圓周角定理及三角函數(shù)的應用,掌握圓周角定理和切線的性質是解題的關鍵.19、(1)詳見解析;(2)這個圓形截面的半徑是5cm.【解析】

(1)根據(jù)尺規(guī)作圖的步驟和方法做出圖即可;(2)先過圓心作半徑,交于點,設半徑為,得出、的長,在中,根據(jù)勾股定理求出這個圓形截面的半徑.【詳解】(1)如圖,作線段AB的垂直平分線l,與弧AB交于點C,作線段AC的垂直平分線l′與直線l交于點O,點O即為所求作的圓心.(2)如圖,過圓心O作半徑CO⊥AB,交AB于點D,設半徑為r,則AD=AB=4,OD=r-2,在Rt△AOD中,r2=42+(r-2)2,解得r=5,答:這個圓形截面的半徑是5cm.【點睛】此題考查了垂徑定理和勾股定理,關鍵是根據(jù)題意畫出圖形,再根據(jù)勾股定理進行求解.20、(1)P(兩個小孩都是女孩)=;(2)P(三個小孩中恰好是2女1男)=.【解析】

(1)畫出樹狀圖即可解題,(2)畫出樹狀圖即可解題.【詳解】(1)畫樹狀圖如下:由樹狀圖可知,生育兩胎共有4種等可能結果,而這兩個小孩恰好都是女孩的有1種可能,∴P(兩個小孩都是女孩)=.(2)畫樹狀圖如下:由樹狀圖可知,生育兩胎共有8種等可能結果,其中這三個小孩中恰好是2女1男的有3種結果,∴P(三個小孩中恰好是2女1男)=.【點睛】本題考查了畫樹狀圖求解概率,中等難度,畫出樹狀圖找到所有可能性是解題關鍵.21、(1),點D的坐標為(2,-8)(2)點F的坐標為(7,)或(5,)(3)菱形對角線MN的長為或.【解析】分析:(1)利用待定系數(shù)法,列方程求二次函數(shù)解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點坐標.(3)分類討論,當MN在x軸上方時,在x軸下方時分別計算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點D的坐標為(2,-8).(2)如圖,當點F在x軸上方時,設點F的坐標為(x,).過點F作FG⊥x軸于點G,易求得OA=2,則AG=x+2,F(xiàn)G=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).當x=7時,y=,∴點F的坐標為(7,).當點F在x軸下方時,設同理求得點F的坐標為(5,).綜上所述,點F的坐標為(7,)或(5,).(3)∵點P在x軸上,∴根據(jù)菱形的對稱性可知點P的坐標為(2,0).如圖,當MN在x軸上方時,設T為菱形對角線的交點.∵PQ=MN,∴MT=2PT.設TP=n,則MT=2n.∴M(2+2n,n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.當MN在x軸下方時,設TP=n,得M(2+2n,-n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.綜上所述,菱形對角線MN的長為或.點睛:1.求二次函數(shù)的解析式(1)已知二次函數(shù)過三個點,利用一般式,y=ax2+bx+c().列方程組求二次函數(shù)解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論