版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如果一元二次方程2x2+3x+m=0有兩個相等的實數(shù)根,那么實數(shù)m的取值為()A.m> B.m C.m= D.m=2.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F(xiàn)分別是CD,AD上的點,且CE=AF.如果∠AED=62°,那么∠DBF的度數(shù)為()A.62° B.38° C.28° D.26°3.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.4.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為()A.36 B.12 C.6 D.35.這個數(shù)是()A.整數(shù) B.分數(shù) C.有理數(shù) D.無理數(shù)6.在,,,這四個數(shù)中,比小的數(shù)有()個.A. B. C. D.7.如圖,在?ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是()A.①②③④ B.①④ C.②③④ D.①②③8.關于x的方程x2﹣3x+k=0的一個根是2,則常數(shù)k的值為()A.1 B.2 C.﹣1 D.﹣29.如圖所示的幾何體是一個圓錐,下面有關它的三視圖的結論中,正確的是()A.主視圖是中心對稱圖形B.左視圖是中心對稱圖形C.主視圖既是中心對稱圖形又是軸對稱圖形D.俯視圖既是中心對稱圖形又是軸對稱圖形10.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,連接CD,若⊙O的半徑r=5,AC=53,則∠B的度數(shù)是(
)A.30°B.45°C.50°D.60°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切線:若⊙O的半徑為2,則圖中陰影部分的面積為_____.12.如圖,BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠P=______°.13.如圖,點A、B、C在⊙O上,⊙O半徑為1cm,∠ACB=30°,則的長是________.14.如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于____度.15.從1,2,3,4,5,6,7,8這八個數(shù)中,任意抽取一個數(shù),這個數(shù)恰好是合數(shù)的概率是__________.16.(﹣12)﹣2﹣(3.14﹣π)0三、解答題(共8題,共72分)17.(8分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.18.(8分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.求證:△AEF≌△DEB;證明四邊形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD的面積.19.(8分)計算:(π﹣3.14)0﹣2﹣|﹣3|.20.(8分)如圖矩形ABCD中AB=6,AD=4,點P為AB上一點,把矩形ABCD沿過P點的直線l折疊,使D點落在BC邊上的D′處,直線l與CD邊交于Q點.(1)在圖(1)中利用無刻度的直尺和圓規(guī)作出直線l.(保留作圖痕跡,不寫作法和理由)(2)若PD′⊥PD,①求線段AP的長度;②求sin∠QD′D.21.(8分)有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7分鐘同時到達C點,乙機器人始終以60米/分的速度行走,如圖是甲、乙兩機器人之間的距離y(米)與他們的行走時間x(分鐘)之間的函數(shù)圖象,請結合圖象,回答下列問題:(1)A、B兩點之間的距離是米,甲機器人前2分鐘的速度為米/分;(2)若前3分鐘甲機器人的速度不變,求線段EF所在直線的函數(shù)解析式;(3)若線段FG∥x軸,則此段時間,甲機器人的速度為米/分;(4)求A、C兩點之間的距離;(5)若前3分鐘甲機器人的速度不變,直接寫出兩機器人出發(fā)多長時間相距28米.22.(10分)如圖,AB是⊙O的直徑,D是⊙O上一點,點E是AC的中點,過點A作⊙O的切線交BD的延長線于點F.連接AE并延長交BF于點C.(1)求證:AB=BC;(2)如果AB=5,tan∠FAC=,求FC的長.23.(12分)已知,在平面直角坐標系xOy中,拋物線L:y=x2-4x+3與x軸交于A,B兩點(點A在點B的左側),頂點為C.(1)求點C和點A的坐標.(2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關于直線x=t的對稱圖形,得到的整個圖形稱為拋物線L關于直線x=t的“L雙拋圖形”(特別地,當直線x=t恰好是拋物線的對稱軸時,得到的“L雙拋圖形”不變),①當t=0時,拋物線L關于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個交點;②若拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,結合圖象,直接寫出t的取值范圍:______;③當直線x=t經過點A時,“L雙拋圖形”如圖所示,現(xiàn)將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點P,交x軸于點Q,滿足PQ=AC時,求點P的坐標.24.如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC、AB于點E、F.(1)若∠B=30°,求證:以A、O、D、E為頂點的四邊形是菱形.(2)若AC=6,AB=10,連結AD,求⊙O的半徑和AD的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題解析:∵一元二次方程2x2+3x+m=0有兩個相等的實數(shù)根,∴△=32-4×2m=9-8m=0,解得:m=.故選C.2、C【解析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質.注意:根據斜邊和直角邊對應相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點睛:熟練運用等腰直角三角形三線合一性質、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關鍵.3、A【解析】
根據應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.4、D【解析】設△OAC和△BAD的直角邊長分別為a、b,結合等腰直角三角形的性質及圖象可得出點B的坐標,根據三角形的面積公式結合反比例函數(shù)系數(shù)k的幾何意義以及點B的坐標即可得出結論.
解:設△OAC和△BAD的直角邊長分別為a、b,
則點B的坐標為(a+b,a﹣b).∵點B在反比例函數(shù)的第一象限圖象上,
∴(a+b)×(a﹣b)=a2﹣b2=1.
∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2.
故選D.點睛:本題主要考查了反比例函數(shù)系數(shù)k的幾何意義、等腰三角形的性質以及面積公式,解題的關鍵是找出a2﹣b2的值.解決該題型題目時,要設出等腰直角三角形的直角邊并表示出面積,再用其表示出反比例函數(shù)上點的坐標是關鍵.5、D【解析】
由于圓周率π是一個無限不循環(huán)的小數(shù),由此即可求解.【詳解】解:實數(shù)π是一個無限不循環(huán)的小數(shù).所以是無理數(shù).
故選D.【點睛】本題主要考查無理數(shù)的概念,π是常見的一種無理數(shù)的形式,比較簡單.6、B【解析】
比較這些負數(shù)的絕對值,絕對值大的反而小.【詳解】在﹣4、﹣、﹣1、﹣這四個數(shù)中,比﹣2小的數(shù)是是﹣4和﹣.故選B.【點睛】本題主要考查負數(shù)大小的比較,解題的關鍵時負數(shù)比較大小時,絕對值大的數(shù)反而小.7、D【解析】
∵在?ABCD中,AO=AC,∵點E是OA的中點,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正確;∵S△AEF=4,=()2=,∴S△BCE=36;故②正確;∵=,∴=,∴S△ABE=12,故③正確;∵BF不平行于CD,∴△AEF與△ADC只有一個角相等,∴△AEF與△ACD不一定相似,故④錯誤,故選D.8、B【解析】
根據一元二次方程的解的定義,把x=2代入得4-6+k=0,然后解關于k的方程即可.【詳解】把x=2代入得,4-6+k=0,解得k=2.故答案為:B.【點睛】本題主要考查了一元二次方程的解,掌握一元二次方程的定義,把已知代入方程,列出關于k的新方程,通過解新方程來求k的值是解題的關鍵.9、D【解析】
先得到圓錐的三視圖,再根據中心對稱圖形和軸對稱圖形的定義求解即可.【詳解】解:A、主視圖不是中心對稱圖形,故A錯誤;
B、左視圖不是中心對稱圖形,故B錯誤;
C、主視圖不是中心對稱圖形,是軸對稱圖形,故C錯誤;
D、俯視圖既是中心對稱圖形又是軸對稱圖形,故D正確.
故選:D.【點睛】本題考查簡單幾何體的三視圖,中心對稱圖形和軸對稱圖形,熟練掌握各自的定義是解題關鍵.10、D【解析】根據圓周角定理的推論,得∠B=∠D.根據直徑所對的圓周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.則sinD=AC∠D=60°∠B=∠D=60°.故選D.“點睛”此題綜合運用了圓周角定理的推論以及銳角三角函數(shù)的定義,解答時要找準直角三角形的對應邊.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題分析:連接OC,求出∠D和∠COD,求出邊DC長,分別求出三角形OCD的面積和扇形COB的面積,即可求出答案.連接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=2,∴陰影部分的面積是S△OCD﹣S扇形COB=×2×2﹣=2﹣π,故答案為2﹣π.考點:1.等腰三角形性質;2.三角形的內角和定理;3.切線的性質;4.扇形的面積.12、30【解析】
根據角平分線的定義可得∠PBC=20°,∠PCM=50°,根據三角形外角性質即可求出∠P的度數(shù).【詳解】∵BP是∠ABC的平分線,CP是∠ACM的平分線,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案為:30【點睛】本題考查及角平分線的定義及三角形外角性質,三角形的外角等于和它不相鄰的兩個內角的和,熟練掌握三角形外角性質是解題關鍵.13、.【解析】
根據圓周角定理可得出∠AOB=60°,再根據弧長公式的計算即可.【詳解】∵∠ACB=30°,
∴∠AOB=60°,
∵OA=1cm,
∴的長=cm.故答案為:.【點睛】本題考查了弧長的計算以及圓周角定理,解題關鍵是掌握弧長公式l=.14、30【解析】試題分析:根據直角三角形斜邊上的中線等于斜邊的一半可得:AE=CE,根據折疊可得:BC=CE,則BC=AE=BE=AB,則∠A=30°.考點:折疊圖形的性質15、.【解析】
根據合數(shù)定義,用合數(shù)的個數(shù)除以數(shù)的總數(shù)即為所求的概率.【詳解】∵在1,2,3,4,5,6,7,8這八個數(shù)中,合數(shù)有4、6、8這3個,∴這個數(shù)恰好是合數(shù)的概率是.故答案為:.【點睛】本題考查了概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A);找到合數(shù)的個數(shù)是解題的關鍵.16、3.【解析】試題分析:分別根據零指數(shù)冪,負指數(shù)冪的運算法則計算,然后根據實數(shù)的運算法則求得計算結果.原式=4-1=3.考點:負整數(shù)指數(shù)冪;零指數(shù)冪.三、解答題(共8題,共72分)17、(1)-1;(2).【解析】
(1)根據零指數(shù)冪的意義、特殊角的銳角三角函數(shù)以及負整數(shù)指數(shù)冪的意義即可求出答案;(2)先化簡原式,然后將a的值代入即可求出答案.【詳解】(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;(2)原式=+=當a=﹣2+時,原式==.【點睛】本題考查了學生的運算能力,解題的關鍵是熟練運用運算法則,本題屬于基礎題型.18、(1)證明詳見解析;(2)證明詳見解析;(3)1.【解析】
(1)利用平行線的性質及中點的定義,可利用AAS證得結論;
(2)由(1)可得AF=BD,結合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質可證得AD=CD,可證得四邊形ADCF為菱形;
(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長,利用菱形的面積公式可求得答案.【詳解】(1)證明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.
∵AD為BC邊上的中線
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四邊形ADCF是平行四邊形,
∵∠BAC=90°,D是BC的中點,E是AD的中點,
∴AD=DC=BC,
∴四邊形ADCF是菱形;
(3)連接DF,
∵AF∥BD,AF=BD,
∴四邊形ABDF是平行四邊形,
∴DF=AB=5,
∵四邊形ADCF是菱形,
∴S菱形ADCF=AC?DF=×4×5=1.【點睛】本題主要考查菱形的性質及判定,利用全等三角形的性質證得AF=CD是解題的關鍵,注意菱形面積公式的應用.19、﹣1.【解析】
本題涉及零指數(shù)冪、負指數(shù)冪、二次根式化簡和特殊角的三角函數(shù)值4個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數(shù)的運算法則求得計算結果.【詳解】原式=1﹣3+4﹣3,=﹣1.【點睛】本題主要考查了實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數(shù)指數(shù)冪、零指數(shù)冪、二次根式、絕對值等考點的運算.20、(1)見解析;(2)【解析】
(1)根據題意作出圖形即可;(2)由(1)知,PD=PD′,根據余角的性質得到∠ADP=∠BPD′,根據全等三角形的性質得到AD=PB=4,得到AP=2;根據勾股定理得到PD==2,根據三角函數(shù)的定義即可得到結論.【詳解】(1)連接PD,以P為圓心,PD為半徑畫弧交BC于D′,過P作DD′的垂線交CD于Q,則直線PQ即為所求;(2)由(1)知,PD=PD′,∵PD′⊥PD,∴∠DPD′=90°,∵∠A=90°,∴∠ADP+∠APD=∠APD+∠BPD′=90°,∴∠ADP=∠BPD′,在△ADP與△BPD′中,,∴△ADP≌△BPD′,∴AD=PB=4,AP=BD′∵PB=AB﹣AP=6﹣AP=4,∴AP=2;∴PD==2,BD′=2∴CD′=BC-BD′=4-2=2∵PD=PD′,PD⊥PD′,∵DD′=PD=2,∵PQ垂直平分DD′,連接QD′則DQ=D′Q∴∠QD′D=∠QDD′∴sin∠QD′D=sin∠QDD′=.【點睛】本題考查了作圖-軸對稱變換,矩形的性質,折疊的性質,全等三角形的判定和性質,等腰直角三角形的性質,正確的作出圖形是解題的關鍵.21、(1)距離是70米,速度為95米/分;(2)y=35x﹣70;(3)速度為60米/分;(4)=490米;(5)兩機器人出發(fā)1.2分或2.1分或4.6分相距21米.【解析】
(1)當x=0時的y值即為A、B兩點之間的距離,由圖可知當=2時,甲追上了乙,則可知(甲速度-乙速度)×時間=A、B兩點之間的距離;(2)由題意求解E、F兩點坐標,再用待定系數(shù)法求解直線解析式即可;(3)由圖可知甲、乙速度相同;(4)由乙的速度和時間可求得BC之間的距離,再加上AB之間的距離即為AC之間的距離;(5)分0-2分鐘、2-3分鐘和4-7分鐘三段考慮.【詳解】解:(1)由圖象可知,A、B兩點之間的距離是70米,甲機器人前2分鐘的速度為:(70+60×2)÷2=95米/分;(2)設線段EF所在直線的函數(shù)解析式為:y=kx+b,∵1×(95﹣60)=35,∴點F的坐標為(3,35),則2k+b=03k+b=35,解得k=35∴線段EF所在直線的函數(shù)解析式為y=35x﹣70;(3)∵線段FG∥x軸,∴甲、乙兩機器人的速度都是60米/分;(4)A、C兩點之間的距離為70+60×7=490米;(5)設前2分鐘,兩機器人出發(fā)x分鐘相距21米,由題意得,60x+70﹣95x=21,解得,x=1.2,前2分鐘﹣3分鐘,兩機器人相距21米時,由題意得,35x﹣70=21,解得,x=2.1.4分鐘﹣7分鐘,直線GH經過點(4,35)和點(7,0),設線段GH所在直線的函數(shù)解析式為:y=kx+b,則,4k+b=357k+b=0,解得k=-則直線GH的方程為y=-353x+當y=21時,解得x=4.6,答:兩機器人出發(fā)1.2分或2.1分或4.6分相距21米.【點睛】本題考查了一次函數(shù)的應用,讀懂圖像是解題關鍵..22、(1)見解析;(2).【解析】分析:(1)由AB是直徑可得BE⊥AC,點E為AC的中點,可知BE垂直平分線段AC,從而結論可證;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,從而可設AE=x,BE=2x,由勾股定理求出AE、BE、AC的長.作CH⊥AF于H,可證Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根據平行線分線段成比例求出FH,然后利用勾股定理求出FC的值.詳解:(1)證明:連接BE.∵AB是⊙O的直徑,∴∠AEB=90°,∴BE⊥AC,而點E為AC的中點,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF為切線,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,設AE=x,則BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如圖,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,F(xiàn)C==.點睛:本題考查了圓周角定理的推論,線段垂直平分線的判定與性質,切線的性質,勾股定理,相似三角形的判定與性質,平行線分線段成比例定理,銳角三角函數(shù)等知識點及見比設參的數(shù)學思想,得到BE垂直平分AC是解(1)的關鍵,得到Rt△ACH∽Rt△BAC是解(2)的關鍵.23、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)【解析】
(1)令y=0得:x2-1x+3=0,然后求得方程的解,從而可得到A、B的坐標,然后再求得拋物線的對稱軸為x=2,最后將x=2代入可求得點C的縱坐標;(2)①拋物線與y軸交點坐標為(0,3),然后做出直線y=3,然后找出交點個數(shù)即可;②將y=3代入拋物線的解析式求得對應的x的值,從而可得到直線y=3與“L雙拋圖形”恰好有3個交點時t的取值,然后結合函數(shù)圖象可得到“L雙拋圖形”與直線y=3恰好有兩個交點時t的取值范圍;③首先證明四邊形ACQP為平行四邊形,由可得到點P的縱坐標為1,然后由函數(shù)解析式可求得點P的橫坐標.【詳解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴拋物線的對稱軸為x=2,將x=2代入拋物線的解析式得:y=-1,∴C(2,-1);(2)①將x=0代入拋物線的解析式得:y=3,∴拋物線與y軸交點坐標為(0,3),如圖所示:作直線y=3,由圖象可知:直線y=3與“L雙拋圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網絡游戲美術設計制作合同
- 2024專用設備采購協(xié)議文本
- 網絡游戲內購及虛擬物品交易規(guī)則及條款
- 2024年個人借款擔保協(xié)議范本
- 智能家居系統(tǒng)設計及安裝合同
- 智能制造電子生產設備采購合同
- 智慧社區(qū)物業(yè)管理與服務平臺開發(fā)合同
- 2024年度轉供電服務代理協(xié)議
- 太陽能光伏發(fā)電系統(tǒng)設計與安裝合同
- 2023屆高考化學人教版一輪復習高考必考大題專練(二)化學原理綜合應用題
- 供電企業(yè)輿情的預防及處置
- (高清版)WST 433-2023 靜脈治療護理技術操作標準
- 醫(yī)院科研合作與成果轉化協(xié)議書
- 銷售配合與帶動(課件)
- 4、《通向金融王國的自由之路》
- 生產建設項目水土保持方案編制
- 班會沒有規(guī)矩不成方圓主題班會課件
- 高考英語復習讀后續(xù)寫人與自然(4)講義
- 2023版道德與法治教案教學設計專題5第1講 全體人民共同的價值追求
- 南京市鼓樓區(qū)2023-2024學年八年級上學期期末英語試卷(含答案解析)
- 小學綜合實踐活動課《有趣的紙貼畫》課件
評論
0/150
提交評論